scholarly journals Clinical significance of CD38 and CD101 expression in PD‑1+CD8+ T cells in patients with epithelial ovarian cancer

2020 ◽  
Vol 20 (1) ◽  
pp. 724-732
Author(s):  
Jian Zhou ◽  
Wenting Wang ◽  
Zhiqing Liang ◽  
Bing Ni ◽  
Wei He ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meysam Yousefi ◽  
Sara Rajaie ◽  
Vahideh Keyvani ◽  
Somayeh Bolandi ◽  
Malihe Hasanzadeh ◽  
...  

AbstractCirculating tumor cells (CTCs) have recently been considered as new prognostic and diagnostic markers for various human cancers; however, their significance in epithelial ovarian cancer (EOC) remains to be elucidated. In this study, using quantitative real-time PCR, we evaluated the expression of EPCAM, MUC1, CEA, HE4 and CA125 mRNAs, as putative markers of CTCs, in the blood of 51 EOC patients before and/or after adjuvant chemotherapy. Our results demonstrated that, before chemotherapy, the expression of EPCAM, MUC1, CEA and HE4 mRNAs were correlated to each other. CEA expression was correlated with tumor stage (r = 0.594, p = 0.000) before chemotherapy, whereas its expression after chemotherapy was correlated with serum levels of CA125 antigen (r = 0.658, p = 0.000). HE4 mRNA showed the highest sensitivity both before and after chemotherapy (82.98% and 85.19%, respectively) and the persistence of this marker after chemotherapy was associated with advanced disease stage. The expression of CA125 mRNA had negative correlation with the other markers and with tumor stage and therapy response (evaluated by the measurement of serum CA125 antigen). Collectively, our results indicated a better clinical significance of tumor-specific markers (CEA and HE4 mRNAs) compared to epithelial-specific markers (EPCAM and MUC1 mRNAs).


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A372-A373
Author(s):  
Ira Winer ◽  
Lucy Gilbert ◽  
Ulka Vaishampayan ◽  
Seth Rosen ◽  
Christopher Hoimes ◽  
...  

BackgroundALKS 4230 is a novel engineered cytokine that selectively targets the intermediate-affinity interleukin-2 receptor complex to activate CD8+ T cells and natural killer cells.1 The ARTISTRY-1 trial (NCT02799095) has shown encouraging efficacy and acceptable tolerability of ALKS 4230 among patients with advanced solid tumors.2 We report a detailed analysis of ovarian cancer (OC) patients who received combination therapy in ARTISTRY-1.MethodsARTISTRY-1 is an ongoing multicohort phase 1/2 trial exploring intravenous ALKS 4230 as monotherapy and combined with pembrolizumab. OC patients were enrolled into a cohort with mixed anti PD 1/L1 unapproved tumor types who had progressed on prior chemotherapy. OC patients received ALKS 4230 (3 µg/kg) on days 1–5 and pembrolizumab (200 mg) on day 1 of a 21 day cycle. Outcomes presented include antitumor activity (RECIST v1.1) and safety as of 7/24/2020. To evaluate changes in tumor microenvironment (TME), baseline and on-treatment biopsies were collected.ResultsFourteen heavily pretreated patients with OC were enrolled. Patients received a median of 5 (range, 2 11) prior regimens and all were previously treated with platinum based therapy. Among 13 evaluable patients with ≥1 assessment, 9 experienced disease control and 4 experienced disease progression; median treatment duration was approximately 7 weeks. Three patients experienced an objective response, including 1 complete response, 1 partial response (PR), and 1 unconfirmed PR; all were platinum resistant and negative for BRCA mutations. Five patients experienced tumor burden reductions (table 1). Treatment-related adverse events at the doses tested have generally been transient and manageable, with the majority being grade 1 and 2 in severity. Overall, based on preliminary data, the combination with ALKS 4230 did not demonstrate any additive toxicity to that already established with pembrolizumab alone. Additional safety and efficacy data are being collected in ongoing cohorts. In the monotherapy dose escalation portion of the study, ALKS 4230 alone increased markers of lymphocyte infiltration in 1 paired melanoma biopsy (1 of 1; on treatment at cycle 2); CD8+ T cell density and PD-L1 tumor proportion score increased 5.2- and 11 fold, respectively, supporting evidence that ALKS 4230 has immunostimulatory impact on the TME and providing rationale for combining ALKS 4230 with pembrolizumab (figure 1).Abstract 347 Table 1Summary of response observations among patients with ovarian cancerAbstract 347 Figure 1Increased markers of lymphocyte tumor infiltrationAn increase in CD3+CD8+ T cells (A, red = CD3; blue = CD8; purple = CD3+CD8+; teal = tumor marker), GranzymeB (B, red = CD8; green = granzymeB; yellow = granzymeB+CD8+; teal = tumor marker), and PD-L1 (C, red = PD-L1; blue = tumor marker) in the tumor microenvironment of a single patient was observed after the patient received monotherapy ALKS 4230ConclusionsThe combination of ALKS 4230, an investigational agent, and pembrolizumab demonstrates an acceptable safety profile and provides some evidence of tumor shrinkage and disease stabilization in some patients with heavily pretreated OC. This regimen could represent a new therapeutic option for these patients.AcknowledgementsThe authors would like to thank all of the patients who are participating in this trial and their families. The trial is sponsored by Alkermes, Inc. Medical writing and editorial support was provided by Parexel and funded by Alkermes, Inc.Trial RegistrationClinicalTrials. gov NCT02799095Ethics ApprovalThis trial was approved by Ethics and Institutional Review Boards (IRBs) at all trial sites; IRB reference numbers 16–229 (Dana-Farber Cancer Institute), MOD00003422/PH285316 (Roswell Park Comprehensive Cancer Center), 20160175 (Western IRB), i15-01394_MOD23 (New York University School of Medicine), TRIAL20190090 (Cleveland Clinic), and 0000097 (ADVARRA).ReferencesLopes JE, Fisher JL, Flick HL, Wang C, Sun L, Ernstoff MS, et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J Immunother Cancer 2020;8:e000673. doi: 10.1136/jitc-2020-000673.Vaishampayan UN, Muzaffar J, Velcheti V, Winer I, Hoimes CJ, Rosen SD, et al. ALKS 4230 monotherapy and in combination with pembrolizumab (pembro) in patients (pts) with refractory solid tumors (ARTISTRY-1). Oral presentation at: European Society for Medical Oncology Annual Meeting; September 2020; virtual.


2018 ◽  
Vol 2 (3) ◽  
Author(s):  
MoonSun Jung ◽  
Amanda J Russell ◽  
Catherine Kennedy ◽  
Andrew J Gifford ◽  
Kylie-Ann Mallitt ◽  
...  

Abstract Background The Myc oncogene family has been implicated in many human malignancies and is often associated with particularly aggressive disease, suggesting Myc as an attractive prognostic marker and therapeutic target. However, for epithelial ovarian cancer (EOC), there is little consensus on the incidence and clinical relevance of Myc aberrations. Here we comprehensively investigated alterations in gene copy number, expression, and activity for Myc and evaluated their clinical significance in EOC. Methods To address inconsistencies in the literature regarding the definition of copy number variations, we developed a novel approach using quantitative polymerase chain reaction (qPCR) coupled with a statistical algorithm to estimate objective thresholds for detecting Myc gain/amplification in large cohorts of serous (n = 150) and endometrioid (n = 80) EOC. MYC, MYCN, and MYCL1 mRNA expression and Myc activity score for each case were examined by qPCR. Kaplan–Meier and Cox-regression analyses were conducted to assess clinical significance of Myc aberrations. Results Using a large panel of cancer cell lines (n = 34), we validated the statistical algorithm for determining clear thresholds for Myc gain/amplification. MYC was the most predominantly amplified of the Myc oncogene family members, and high MYC mRNA expression levels were associated with amplification in EOC. However, there was no association between prognosis and increased copy number or gene expression of MYC/MYCN/MYCL1 or with a pan-Myc transcriptional activity score, in EOC, although MYC amplification was associated with late stage and high grade in endometrioid EOC. Conclusion A systematic and comprehensive analysis of Myc genes, transcripts, and activity levels using qPCR revealed that although such aberrations commonly occur in EOC, overall they have limited impact on outcome, suggesting that the biological relevance of Myc oncogene family members is limited to certain subsets of this disease.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1749
Author(s):  
Jing-Jing Wang ◽  
Michelle Kwan-Yee Siu ◽  
Yu-Xin Jiang ◽  
Thomas Ho-Yin Leung ◽  
David Wai Chan ◽  
...  

Programmed cell death 1 ligand (PD-L1) blockade has been used therapeutically in the treatment of ovarian cancer, and potential combination treatment approaches are under investigation to improve the treatment response rate. The increased dependence on glutamine is widely observed in various type of tumors, including ovarian cancer. Kidney-type glutaminase (GLS), as one of the isotypes of glutaminase, is found to promote tumorigenesis. Here, we have demonstrated that the combined treatment with GLS inhibitor 968 and PD-L1 blockade enhances the immune response against ovarian cancer. Survival analysis using the Kaplan–Meier plotter dataset from ovarian cancer patients revealed that the expression level of GLS predicts poor survival and correlates with the immunosuppressive microenvironment of ovarian cancer. 968 inhibits the proliferation of ovarian cancer cells and enhances granzyme B secretion by CD8+ T cells as detected by XTT assay and flow cytometry, respectively. Furthermore, 968 enhances the apoptosis-inducing ability of CD8+ T cells toward cancer cells and improves the treatment effect of anti-PD-L1 in treating ovarian cancer as assessed by Annexin V apoptosis assay. In vivo studies demonstrated the prolonged overall survival upon combined treatment of 968 with anti-PD-L1 accompanied by increased granzyme B secretion by CD4+ and CD8+ T cells isolated from ovarian tumor xenografts. Additionally, 968 increases the infiltration of CD3+ T cells into tumors, possibly through enhancing the secretion of CXCL10 and CXCL11 by tumor cells. In conclusion, our findings provide a novel insight into ovarian cancer cells influence the immune system in the tumor microenvironment and highlight the potential clinical implication of combination of immune checkpoints with GLS inhibitor 968 in treating ovarian cancer.


2020 ◽  
Author(s):  
Liancheng Zhu ◽  
Mingzi Tan ◽  
Haoya Xu ◽  
Bei Lin

Abstract Background.Human Epididymis Protein 4 (HE4) is a novel serum biomarker for diagnosis of epithelial ovarian cancer (EOC) with high specificity and sensitivity compared with CA125, and the increasing researches have been carried out on its roles in promoting carcinogenesis and chemoresistance in EOC in recent years, however, its underlying molecular mechanisms remain poorly understood. The aim of this study was to elucidate the molecular mechanisms of HE4 stimulation and to identify the key genes and pathways mediating carcinogenesis in EOC using microarray and bioinformatics analysis.Methods. We established a stable HE4-silence ES-2 ovarian cancer cell line labeled as “S”, and its active HE4 protein stimulated cells labeled as “S4”. Human whole genome microarray analysis was used to identify deferentially expressed genes (DEGs) from triplicate samples of S4 and S cells. “clusterProfiler” package in R, DAVID, Metascape, and Gene Set Enrichment Analysis (GSEA) were used to perform gene ontology (GO) and pathway enrichment analysis, and cBioPortal for WFDC2 coexpression analysis. GEO dataset (GSE51088) and quantitative real-time polymerase chain reaction (qRT-PCR) was applied for validation. The protein–protein interaction (PPI) network and modular analyses were performed using Metascape and Cytoscape. Results.In total, 713 DEGs were found (164 up regulated and 549 down regulated) and further analyzed by GO, pathway enrichment and PPI analyses. We found that MAPK pathway accounted for a significant portion of the enriched terms. WFDC2 coexpression analysis revealed ten WFDC2 coexpressed genes (TMEM220A, SEC23A, FRMD6, PMP22, APBB2, DNAJB4, ERLIN1, ZEB1, RAB6B, and PLEKHF1) that were also dramatically changed in S4 cells and validated by dataset GSE51088. Kaplan–Meier survival statistics revealed clinical significance for all of the 10 target genes. Finally, PPI was constructed, sixteen hub genes and eight molecular complex detections (MCODEs) were identified, the seeds of five most significant MCODEs were subjected to GO and KEGG enrichment analysis and their clinical significance was evaluated.Conclusions.By applying microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network of active HE4 stimulation in EOC cells. We offered several possible mechanisms and identified therapeutic and prognostic targets of HE4 in EOC.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiangyu Wang ◽  
Fengmian Wang ◽  
Zhi-Gang Zhang ◽  
Xiao-Mei Yang ◽  
Rong Zhang ◽  
...  

Serine/threonine protein kinase-3 (STK3) is a critical molecule of the Hippo pathway but little is known about its biological functions in the ovarian cancer development. We demonstrated the roles of STK3 in ovarian cancer. Existing databases were used to study the expression profile of STK3. STK3 was significantly downregulated in OC patients, and the low STK3 expression was correlated with a poor prognosis. In vitro cell proliferation, apoptosis, and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the roles of STK3. The overexpression of STK3 significantly inhibited cell proliferation, apoptosis, and migration of ovarian cancer cells in vitro and tumor growth in vivo. Bisulfite sequencing PCR analysis was performed to validate the methylation of STK3 in ovarian cancer. RNA sequencing and gene set enrichment analysis (GSEA) were used to compare the transcriptome changes in the STK3 overexpression ovarian cancer and control cells. The signaling pathway was analyzed by western blotting. STK3 promoted the migration of CD8+ T-cells by activating nuclear transcription factor κB (NF-κB) signaling. STK3 is a potential predictor of OC. It plays an important role in suppressing tumor growth of ovarian cancer and in chemotaxis of CD8+ T-cells.


2019 ◽  
Vol 24 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Longyang Liu ◽  
Zhaoyang Zeng ◽  
Juanjuan Yi ◽  
Liu Zuo ◽  
Jin Lv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document