Pre-exercise breakfast ingestion: blood glucose effect during a low intensity exercise

2005 ◽  
Vol 4 (5) ◽  
pp. 261-273
Author(s):  
Paula Guedes Cocade
Author(s):  
Penelope M. Warwick

The purpose of the study was to investigate thermic and glycemic responses to conventional meals with and without prior low-intensity exercise. Fourteen healthy volunteers (7 men, 7 women) undertook 4 treatments, 2 bread and 2 pasta meals, either with (E) or without (NE) prior exercise (a 45-min treadmill walk). Meals provided 58 g carbohydrate and 2360 kJ. Energy expenditure and blood-glucose concentrations were measured before and for 3 h after the meals. The thermic effect of food (TEF) was lower after pasta (121 ± 32 kJ/3 h) than after bread (154 ± 62 kJ/3 h), P = 0.009, but was not affected by exercise. Glycemic responses were lower after E (155 ± 113 mmol·L−1 ·3 h−1) than NE (199 ± 97 mmol·L−1 · 3 h−1) after pasta (P = 0.020) but not after bread. TEF was lower after pasta than bread but was not affected by prior low-intensity exercise. The effects of exercise on glycemic responses to meals were inconsistent.


2016 ◽  
Vol 125 (09) ◽  
pp. 583-591 ◽  
Author(s):  
M. Kanter ◽  
F. Aksu ◽  
M. Takir ◽  
O. Kostek ◽  
B. Kanter ◽  
...  

Abstract Background The aim of this study was to investigate the effects of low intensity exercise on heart of streptozotocin (STZ)-induced diabetic rats. Materials and Methods The rats were randomly divided into 3 experimental groups: A (control), B (diabetic untreated), and C (diabetic treated with low intensity exercise); each group contains 8 animals. B and C groups received STZ. Diabetes was induced in 2 groups by a single intraperitoneal (i.p) injection of STZ (40 mg/kg, freshly dissolved in 0,1 M citrate buffer, pH 4.2). 2 days after STZ treatment, diabetes in 2 experimental groups was confirmed by measuring blood glucose levels. Rats with blood glucose levels of 250 mg/dl or higher were considered to be diabetic. Animals in the exercise group were made to run the treadmill once a day for 4 consecutive weeks. Exercise started 3 days prior to STZ administration. Results After induction of diabetes, histological abnormalities were observed, including myofibrillar loss, vacuolization of cytoplasm and irregularity of myofibrils. These alterations were attenuated by low intensity exercise. Our data indicates a significant reduction of oxidative stress and apoptosis in cardiomyocytes after exercise. Treatment of diabetic animals with low intensity exercise, decreased the elevated tissue malondialdehyde (MDA) levels and increased the reduced activities of the enzymatic antioxidants superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in cardiac tissue. Conclusion These findings suggest that low intensity exercise has a therapeutic protective effect in diabetes by decreasing oxidative stress and apoptosis, and by preservation of myocardial integrity.


Author(s):  
Woo-Hwi Yang ◽  
Hyuntae Park ◽  
Marijke Grau ◽  
Oliver Heine

During low-intensity exercise stages of the lactate threshold test, blood lactate concentrations gradually diminish due to the predominant utilization of total fat oxidation. However, it is unclear why blood glucose is also reduced in well-trained athletes who also exhibit decreased lactate concentrations. This review focuses on decreased glucose and lactate concentrations at low-exercise intensity performed in well-trained athletes. During low-intensity exercise, the accrued resting lactate may predominantly be transported via blood from the muscle cell to the liver/kidney. Accordingly, there is increased hepatic blood flow with relatively more hepatic glucose output than skeletal muscle glucose output. Hepatic lactate uptake and lactate output of skeletal muscle during recovery time remained similar which may support a predominant Cori cycle (re-synthesis). However, this pathway may be insufficient to produce the necessary glucose level because of the low concentration of lactate and the large energy source from fat. Furthermore, fatty acid oxidation activates key enzymes and hormonal responses of gluconeogenesis while glycolysis-related enzymes such as pyruvate dehydrogenase are allosterically inhibited. Decreased blood lactate and glucose in low-intensity exercise stages may be an indicator of recovery ability in well-trained athletes. Athletes of intermittent sports may need this recovery ability to successfully perform during competition.


2014 ◽  
pp. 72-76 ◽  
Author(s):  
Luiz Augusto da Silva ◽  
Leandro de Freitas ◽  
Thiago Emannuel Medeiros ◽  
Raul Osiecki ◽  
Renan Garcia Michel ◽  
...  

Objective: The study investigated the effect of supplementation with maltodextrin (CHO) alone or associated to caffeine during exercise in T2DM subjects. Methods: Pilot study, using Eight subjects with T2DM, aged 55±10 years, received CHO (1g/kg) or caffeine (1.5 mg/kg) alone or associated before exercise protocol. The exercise was executed at 40% heart rate (HR) reserve for 40 min, with 10-min recovery. Blood pressure (BP) and perceived exertion scale (Borg) were checked every 2 min. Blood glucose (BG) was checked every 10 min. For statistical analysis, ANOVA test was used and the value was considered statistically significant at p <0.05. Results: The results showed that BP and HR did not change significantly among all treatments. Caffeine promoted a significant reduction in BG of 75 mg/dL (65%, p <0.05) during 40 min of exercise protocol compared to all groups. Conclusion: Supplementation with 1.5 mg/kg of caffeine reduces BG concentration during prolonged exercise in T2DM patients.


2003 ◽  
Vol 284 (6) ◽  
pp. E1162-E1171 ◽  
Author(s):  
Mark J. Roef ◽  
Kees de Meer ◽  
Satish C. Kalhan ◽  
Helma Straver ◽  
Ruud Berger ◽  
...  

We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33–34% maximal O2 uptake, seven subjects received, in random order, either a sodium lactate infusion (60 μmol · kg−1 · min−1) or an isomolar sodium bicarbonate infusion. The contribution of lactate to gluconeogenic glucose was quantified by measuring 2H incorporation into glucose after body water was labeled with deuterium oxide, and glucose rate of appearance (Ra) was measured by [6,6-2H2]glucose dilution. Infusion of lactate increased lactate concentration to 4.4 ± 0.6 mM (mean ± SE). Exercise induced a decrease in blood glucose concentration from 5.0 ± 0.2 to 4.2 ± 0.3 mM ( P < 0.05); lactate infusion abolished this decrease (5.0 ± 0.3 mM; P < 0.001) and increased glucose Ra compared with bicarbonate infusion ( P < 0.05). Lactate infusion increased both GNG from lactate (29 ± 4 to 46 ± 4% of glucose Ra, P < 0.001) and total GNG. We conclude that lactate infusion during low-intensity exercise in fasting humans 1) increased GNG from lactate and 2) increased glucose production, thus increasing the blood glucose concentration. These results indicate that GNG capacity is available in humans after an overnight fast and can be used to sustain blood glucose levels during low-intensity exercise when lactate, a known precursor of GNG, is available at elevated plasma levels.


2006 ◽  
Vol 7 (3) ◽  
pp. 163-174 ◽  
Author(s):  
Myoung-Ae Choe ◽  
Gyeong Ju An ◽  
Yoon-Kyong Lee ◽  
Ji Hye Im ◽  
Smi Choi-Kwon ◽  
...  

This study examined the effects of daily low-intensity exercise following acute stroke on mass, Type I and II fiber cross-sectional area, and myofibrillar protein content of hind-limb muscles in a rat model. Adult male Sprague-Dawley rats were randomly assigned to 1 of 4 groups (n = 7-9 per group): stroke (occlusion of the right middle cerebral artery [RMCA]), control (sham RMCA procedure), exercise, and stroke-exercise. Beginning 48 hours post-stroke induction/sham operation, rats in the exercise group had 6 sessions of exercise in which they ran on a treadmill at grade 10 for 20 min/day at 10 m/min. At 8 days poststroke, all rats were anesthetized and soleus, plantaris, and gastrocnemius muscles were dissected from both the affected and unaffected sides. After 6 sessions of exercise following acute ischemic stroke, the stroke-exercise group showed the following significant (p < .05) increases compared to the stroke-only group: body weight and dietary intake, muscle weight of affected soleus and both affected and unaffected gastrocnemius muscle, Type I fiber cross-sectional area of affected soleus and both affected and unaffected gastrocnemius muscle, Type II fiber cross-sectional area of the unaffected soleus, both affected and unaffected plantaris and gastrocnemius muscle, Type II fiber distribution of affected gastrocnemius muscle, and myofibrillar protein content of both affected and unaffected soleus muscle. Daily low-intensity exercise following acute stroke attenuates hind-limb muscle atrophy in both affected and unaffected sides. The effects of exercise are more pronounced in the soleus and gastrocnemius as compared to the plantaris muscle.


Author(s):  
Eun Mi Jang ◽  
So Hyun Park

(1) Background—The application of neuromuscular electrical stimulation (NMES) combined with low-intensity exercise to the elderly can be more efficient than low-intensity exercise only in terms of delaying the loss of muscle mass. We aimed to assess the adjunct of NMES to low-intensity lower limb strengthening exercise to prevent falls in frail elderly for a relatively short period of 4 weeks. (2) Methods—Thirty elderly women aged 65 or above were randomly categorized into three groups: control group (CON, n = 8), exercise group (EX, n = 10), and NMES with exercise group (EX + NMES, n = 9). The exercise group took part in a lower limb strengthening exercise program for one hour three times a week for four weeks. Furthermore, the NMES with exercise group had added NMES stimulation when exercising. The limbs’ muscle mass, body fat mass, calf circumference, grip force, five times sit-to-stand test, timed up-and-go test (TUG), one-leg stand test, and Y-balance test (YBT) were evaluated at baseline and 4 weeks after. (3) Results—Comparisons between the three groups showed that the TUG was significantly decreased and the YB was significantly increased in NMES with exercise group (p < 0.05). (4) Conclusions—These results suggested that a combination of NMES stimulation and exercises was more helpful in strengthening balance than exercises alone in the short term.


Sign in / Sign up

Export Citation Format

Share Document