Analysis of the flow rate characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes

2014 ◽  
Vol 27 (3) ◽  
pp. 628-634 ◽  
Author(s):  
Jun Huang ◽  
Jianhui Zhang ◽  
Shouyin Wang ◽  
Weidong Liu
Author(s):  
Yi Hou ◽  
Lipeng He ◽  
Zheng Zhang ◽  
Baojun Yu ◽  
Hong Jiang ◽  
...  

This paper focuses on a new structure in the valveless piezoelectric pump, which has a combination structure of the conical flow channel and two fishtail-shaped bluffbodies in the chamber of the pump. The fishtail-shaped bluffbody is inspired by the shape of the swimming fish to diminish the backflow and optimize the performance of the pump. The performance is studied by changing the shape and size of the inlet and outlet, the bluff bodies’ height and the space between two bluff bodies. The results show that the 3 mm × 3 mm square inlet, 3 mm diameter round outlet, 3 mm height of bluffbodies, 6.8 mm pitch of bluffbodies has a best performance in all 10 prototypes, which implements a maximum flow rate of 87.5 ml/min at 170 V 40 Hz with a noise of 42.6 dB. This study makes a preliminary investigation and theoretical explanation for the subsequent optimization of this structure, improved the performance of the valveless piezoelectric pump, broaden the thinking of the design for the bluffbody for better performance of the valveless piezoelectric pump.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2881 ◽  
Author(s):  
Jianhui Zhang ◽  
Yuan Wang ◽  
Jun Huang

Various kinds of the models had been proposed to explain the relationship between the performance and the structural parameters of valveless piezoelectric pumps, so as to evaluate the functional performance such devices. Among the models, the equivalent circuit model, which converts the multi-field problem of a valveless piezoelectric pump system into a simple circuit problem, is the most simple and clear one. Therefore, the proposed structure and working principle of the valveless piezoelectric pump with multistage Y-shape treelike bifurcate tubes are analyzed; then, the equivalent circuit model of the valveless piezoelectric pump is established based on the working principles of this pump and liquid-electric analogy theory. Finally, an experimental study of the pump is carried out, with a comparative analysis of the experimental results and the simulation results of the generated equivalent circuit. The experimental results show that with a driving voltage of 100 V and frequency of 6 Hz, the maximum flow rate of the valveless piezoelectric pump is 1.16 mL/min. Meanwhile, the output current of equivalent circuit also reaches its peak at the frequency of 6 Hz, therefore, indicating a good predictive ability of this model in calculating the maximum output flow rate and best working frequency of valveless piezoelectric pumps.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kan Bian ◽  
Zhi Huang ◽  
Jietao Dai ◽  
Fan Zhang ◽  
Xiaosheng Chen ◽  
...  

Studies have shown that the valveless piezoelectric pump with streamline flow tubes (VPPSFTs) can increase the flow rate while reducing the vortex, which has a broad application prospect and conforms to the huge potential demand in the fields of medical treatment, sanitation, and health care. The flow runner of the VPPSFT was designed as two segments with a smooth transition between the hyperbola segment and the arc segment. However, the effect of the radius of the arc segment on pump performance is not clear. Therefore, three groups of VPPSFT with arc segments of different curvature radii were designed in this study, and the influence of curvature radius of arc segment on the pump performance was explored. On the basis of the theoretical analysis of fluid continuity and conservation of energy, the structure of VPPSFT was designed, the experimental test was carried out, and the finite element simulation software was used for numerical analysis. The results show that the output performance increases with the increase in the radius of the arc segment, and the maximum flow rate was 116.78 mL/min. The amplitude and the flow rate are almost the same trend as the frequency. This study improves the performance of the valveless piezoelectric pump and provides reference for the structure design of VPPSFT.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022028
Author(s):  
Yeming Sun ◽  
Yu Wang ◽  
Yiwei Wang

Abstract A valve less piezoelectric pump with triangular obstacles is designed and manufactured, which uses piezoelectric vibrator as power source. The working principle and theoretical flow rate of the valveless piezoelectric pump are analyzed, and its flow rate expression is derived. The flow resistance characteristics of triangular obstacles are simulated by numerical simulation. Based on the mass fraction distribution of liquid water, the forward and reverse flow resistance of triangular obstacles and the influence of triangular obstacles on pumping capacity are analyzed. Finally, two groups of test prototypes of the valveless pump are made by using the engraving machine, and the flow measurement test is carried out. The experimental results show that the valveless piezoelectric pump with triangular obstacles can realize the valveless pumping function, and the pumping flow per unit time increases with the increase of triangular obstacles in the channel, and decreases with the increase of the distance between triangular obstacles and the channel. When the driving voltage is 140V and the driving frequency is 10Hz, the maximum output flow of the piezoelectric pump is 16.26ml/min.


2021 ◽  
Vol 11 (7) ◽  
pp. 2909
Author(s):  
Weiqing Huang ◽  
Liyi Lai ◽  
Zhenlin Chen ◽  
Xiaosheng Chen ◽  
Zhi Huang ◽  
...  

Imitating the structure of the venous valve and its characteristics of passive opening and closing with changes in heart pressure, a piezoelectric pump with flexible valves (PPFV) was designed. Firstly, the structure and the working principle of the PPFV were introduced. Then, the flexible valve, the main functional component of the pump, was analyzed theoretically. Finally, an experimental prototype was manufactured and its performance was tested. The research proves that the PPFV can achieve a smooth transition between valved and valveless by only changing the driving signal of the piezoelectric (PZT) vibrator. The results demonstrate that when the driving voltage is 100 V and the frequency is 25 Hz, the experimental flow rate of the PPFV is about 119.61 mL/min, and the output pressure is about 6.16 kPa. This kind of pump can realize the reciprocal conversion of a large flow rate, high output pressure, and a small flow rate, low output pressure under the electronic control signal. Therefore, it can be utilized for fluid transport and pressure transmission at both the macro-level and the micro-level, which belongs to the macro–micro combined component.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 500
Author(s):  
Jian Chen ◽  
Wenzhi Gao ◽  
Changhai Liu ◽  
Liangguo He ◽  
Yishan Zeng

This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz.


Author(s):  
Yun-Hao Peng ◽  
Dai-Hua Wang ◽  
Lian-Kai Tang

Parametric simulation of multi-chamber piezoelectric pump proposed by authors shows that its flow rate is positively correlated with chamber compression ratio when height of chamber wall is not less than central deflection of circular piezoelectric unimorph actuator (CPUA). Therefore, in this paper, principle and structure of multi-chamber piezoelectric pump with novel CPUAs with three-layer structure are proposed and realized, so as to improve its chamber compression ratio, and then improve its flow rate. Its processing technology compatible with PCB processing technology is studied and its flow rate model is established. Central deflection of CPUA with three-layer structure and the flow rate characteristics are tested. Experimental results show that when the central deflection of CPUA with three-layer structure reaches the maximum value of 106.8 μm, the chamber compression ratio and flow rate of multi-chamber piezoelectric pump reach the maximum value of 50% and 3.11 mL/min, respectively. The maximum flow rate is increased by 622% compared to unimproved pump. By comparing experimental results with numerical and finite element simulation results, the realized multi-chamber piezoelectric pump has large flow rate and the established flow rate model can predict its flow rate.


2016 ◽  
Vol 24 (2) ◽  
pp. 327-334
Author(s):  
张蕊华 ZHANG Rui-hua ◽  
张建辉 ZHANG Jian-hui ◽  
朱银法 ZHU Yin-fa ◽  
胡笑奇 HU Xiao-qi

Sign in / Sign up

Export Citation Format

Share Document