scholarly journals Dynamics for a non-autonomous fall armyworm-maize interaction model with a saturation functional response

2021 ◽  
Vol 19 (1) ◽  
pp. 146-168
Author(s):  
Salamida Daudi ◽  
◽  
Livingstone Luboobi ◽  
Moatlhodi Kgosimore ◽  
Dmitry Kuznetsov ◽  
...  

<abstract><p>In this study, we present a non-autonomous model with a Holling type II functional response, to study the complex dynamics for fall armyworm-maize biomass interacting in a periodic environment. Understanding how seasonal variations affect fall armyworm-maize dynamics is critical since maize is one of the most important cereals globally. Firstly, we study the dynamical behaviours of the basic model; that is, we investigate positive invariance, boundedness, permanence, global stability and non-persistence. We then extended the model to incorporate time dependent controls. We investigate the impact of reducing fall armyworm egg and larvae population, at minimal cost, through traditional methods and use of chemical insecticides. We noted that seasonal variations play a significant role on the patterns for all fall armyworm populations (egg, larvae, pupae and moth). We also noted that in all scenarios, the optimal control can greatly reduce the sizes of fall armyworm populations and in some scenarios, total elimination may be attained. The modeling approach presented here provides a framework for designing effective control strategies to manage the fall armyworm during outbreaks.</p></abstract>

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


Pertussis ◽  
2018 ◽  
pp. 6-25
Author(s):  
Pejman Rohani ◽  
Samuel V. Scarpino

Resolving the long-term, population-level consequences of changes in pertussis epidemiology, arising from bacterial evolution, shifts in vaccine-induced immunity, or changes in surveillance, are key challenges for devising effective control strategies. This chapter reviews some of the key features of pertussis epidemiology, together with the underlying epidemiological principles that set the context for their interpretation. These include the relationship between the age distribution of cases and pertussis transmission potential, the impact of vaccine uptake on incidence, periodicity and age incidence, as well as spatially explicit recurrent pertussis epidemics and associated extinction frequency. This review highlights some of the predictable and consistent aspects of pertussis epidemiology (e.g. the systematic increase in the inter-epidemic period with the introduction of whole-cell vaccines) and a number of important heterogeneities, including variations in contemporary patterns of incidence and geographic spread.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1894
Author(s):  
Jaeyoung Choi

Finding hidden infected nodes is extremely important when information or diseases spread rapidly in a network because hints regarding the global properties of the diffusion dynamics can be provided, and effective control strategies for mitigating such spread can be derived. In this study, to understand the impact of the structure of the underlying network, a cascade infection-recovery problem is considered over an Erdös-Rényi (ER) random graph when a subset of infected nodes is partially observed. The goal is to reconstruct the underlying cascade that is likely to generate these observations. To address this, two algorithms are proposed: (i) a Neighbor-based recovery algorithm (NBRA(α)), where 0≤α≤1 is a control parameter, and (ii) a BFS tree-source-based recovery algorithm (BSRA). The first one simply counts the number of infected neighbors for candidate hidden cascade nodes and computes the possibility of infection from the neighbors by controlling the parameter α. The latter estimates the cascade sources first and computes the infection probability from the sources. A BFS tree approximation is used for the underlying ER random graph with respect to the sources for computing the infection probability because of the computational complexity in general loopy graphs. We then conducted various simulations to obtain the recovery performance of the two proposed algorithms. As a result, although the NBRA(α) uses only local information of the neighboring infection status, it recovers the hidden cascade infection well and is not significantly affected by the average degree of the ER random graph, whereas the BSRA works well on a local tree-like structure.


Author(s):  
Qimin Huang ◽  
David Gurarie ◽  
Martial Ndeffo-Mbah ◽  
Emily Li ◽  
Charles H King

Abstract Background A seasonal transmission environment including seasonal variation of snail population density and human-snail contact patterns can affect the dynamics of Schistosoma infection and the success of control interventions. In projecting control outcomes, conventional modeling approaches have often ignored seasonality by using simplified intermediate-host modeling, or by restricting seasonal effects through use of yearly averaging. Methods We used mathematical analysis and numerical simulation to estimate the impact of seasonality on disease dynamics and control outcomes, and to evaluate whether seasonal averaging or intermediate-host reduction can provide reliable predictions of control outcomes. We also examined whether seasonality could be used as leverage in creation of effective control strategies. Results We found models that used seasonal averaging could grossly overestimate infection burden and underestimate control outcomes in highly seasonal environments. We showed that proper intra-seasonal timing of control measures could make marked improvement on the long-term burden reduction for Schistosoma transmission control, and we identified the optimal timing for each intervention. Seasonal snail control, implemented alone, was less effective than mass drug administration, but could provide additive impact in reaching control and elimination targets. Conclusion Seasonal variation makes Schistosoma transmission less sustainable and easier to control than predicted by earlier modeling studies.


2020 ◽  
Author(s):  
Shunxiang Huang ◽  
Lin Wu ◽  
Li Xu ◽  
Aihong Zhang ◽  
Li Sheng ◽  
...  

The coronavirus disease 2019 (COVID-19) is spreading rapidly all over the world. The transmission dynamics of the COVID-19 pandemic is still unclear, but developing strategies for mitigating the severity of the pandemic is yet a top priority for global public health. In this study, we developed a novel compartmental model, SEIR-CV(susceptible-exposed-infectious-removed with control variables), which not only considers the key characteristics of asymptomatic infection and the effects of seasonal variations, but also incorporates different control measures for multiple transmission routes, so as to accurately predict and effectively control the spread of COVID-19. Based on SEIR-CV, we predicted the COVID-19 epidemic situation in China out of Hubei province and proposed corresponding control strategies. The results showed that the prediction results are highly consistent with the outbreak surveillance data, which proved that the proposed control strategies have achieved sound consequent in the actual epidemic control. Subsequently, we have conducted a rolling prediction for the United States, Brazil, India, five European countries (the United Kingdom, Italy, Spain, Germany, and France), southern hemisphere, northern hemisphere, and the world out of China. The results indicate that control measures and seasonal variations have a great impact on the progress of the COVID-19 pandemic. Our prediction results show that the COVID-19 pandemic is developing more rapidly due to the impact of the cold season in the southern hemisphere countries such as Brazil. While the development of the pandemic should have gradually weakened in the northern hemisphere countries with the arrival of the warm season, instead of still developing rapidly due to the relative loose control measures such as the United States and India. Furthermore, the prediction results illustrate that if keeping the current control measures in the main COVID-19 epidemic countries, the pandemic will not be contained and the situation may eventually turn to group immunization, which would lead to the extremely severe disaster of about 5 billion infections and 300 million deaths globally. However, if China's super stringent control measures were implemented from 15 July, 15 August or 15 September 2020, the total infections would be contained about 15 million, 32 million or 370 million respectively, which indicates that the stringent and timely control measures is critical, and the best window period is before September for eventually overcoming COVID-19.


2020 ◽  
Vol 13 (04) ◽  
pp. 2050025
Author(s):  
G. Kolaye ◽  
I. Damakoa ◽  
S. Bowong ◽  
R. Houe ◽  
D. Békollè

In this paper, we studied the impact of sensitization and sanitation as possible control actions to curtail the spread of cholera epidemic within a human community. Firstly, we combined a model of Vibrio Cholerae with a generic SIRS cholera model. Classical control strategies in terms of the sensitization of population and sanitation are integrated through the impulsive differential equations. Then we presented the theoretical analysis of the model. More precisely, we computed the disease free equilibrium. We derive the basic reproduction number [Formula: see text] which determines the extinction and the persistence of the infection. We show that the trivial disease-free equilibrium is globally asymptotically stable whenever [Formula: see text], while when [Formula: see text], the trivial disease-free equilibrium is unstable and there exists a unique endemic equilibrium point which is globally asymptotically stable. Theoretical results are supported by numerical simulations, which further suggest that the control of cholera should consider both sensitization and sanitation, with a strong focus on the latter.


2021 ◽  
Vol 13 (12) ◽  
pp. 6923
Author(s):  
Ali M. Al-Shaery ◽  
Bilal Hejase ◽  
Abdessamad Tridane ◽  
Norah S. Farooqi ◽  
Hamad Al Jassmi

With the coronavirus (COVID-19) pandemic continuing to spread around the globe, there is an unprecedented need to develop different approaches to containing the pandemic from spreading further. One particular case of importance is mass-gathering events. Mass-gathering events have been shown to exhibit the possibility to be superspreader events; as such, the adoption of effective control strategies by policymakers is essential to curb the spread of the pandemic. This paper deals with modeling the possible spread of COVID-19 in the Hajj, the world’s largest religious gathering. We present an agent-based model (ABM) for two rituals of the Hajj: Tawaf and Ramy al-Jamarat. The model aims to investigate the effect of two control measures: buffers and face masks. We couple these control measures with a third control measure that can be adopted by policymakers, which is limiting the capacity of each ritual. Our findings show the impact of each control measure on the curbing of the spread of COVID-19 under the different crowd dynamics induced by the constraints of each ritual.


2020 ◽  
Vol 4 ◽  
pp. 78-95
Author(s):  
A.R. Ivanova ◽  
◽  
E.N. Skriptunova ◽  
N.I. Komasko ◽  
A.A. Zavialova ◽  
...  

A review of literature on the impact of dust and sand storms on the air transport operation is presented. Observational data on dust storms at the aerodromes of European Russia for the period of 2001-2019 are analyzed. The seasonal variations in dust transport episodes at aerodromes and its relationship with visibility changes are discussed. The characteristics of dusty air masses and advection are given. It is concluded that the frequency of dust transfer episodes for the aerodromes under study has decreased over the past five years, except for Gumrak aerodrome (Volgograd). Keywords: dust storm, sand storm, aviation, visibility, seasonal variations, aerodrome оf European Russia


Sign in / Sign up

Export Citation Format

Share Document