scholarly journals Diversity and biological activity of culturable endophytic bacteria associated with marigold (Calendula officinalis L.)

2021 ◽  
Vol 7 (3) ◽  
pp. 336-353
Author(s):  
Vyacheslav Shurigin ◽  
◽  
Burak Alaylar ◽  
Kakhramon Davranov ◽  
Stephan Wirth ◽  
...  

<abstract> <p>Endophytes colonizing plant tissue play an essential role in plant growth, development, stress tolerance and plant protection from soil-borne diseases. In this study, we report the diversity of cultivable endophytic bacteria associated with marigold (<italic>Calendula officinalis</italic> L.) by using 16S rRNA gene analysis and their plant beneficial properties. A total of 42 bacterial isolates were obtained from plant tissues of marigold. They belonged to the genera <italic>Pantoea, Enterobacter, Pseudomonas, Achromobacter, Xanthomonas, Rathayibacter, Agrobacterium, Pseudoxanthomonas</italic>, and <italic>Beijerinckia</italic>. Among the bacterial strains, <italic>P. kilonensis</italic> FRT12, and <italic>P. rhizosphaerae</italic> FST5 showed moderate or vigorous inhibition against three tested plant pathogenic fungi, <italic>F. culmorum, F. solani</italic> and <italic>R. solani</italic>. They also demonstrated the capability to produce hydrolytic enzymes and indole-3-acetic acid (IAA). Five out of 16 isolates significantly stimulated shoot and root growth of marigold in a pot experiment. The present study reveals that more than half of the bacterial isolates associated with marigold (<italic>C. officinalis</italic> L.) provided antifungal activity against one or more plant pathogenic fungi. Our findings suggest that medicinal plants with antimicrobial activity could be a source for selecting microbes with antagonistic activity against fungal plant pathogens or with plant growth stimulating potential. These isolates might be considered as promising candidates for the improvement of plant health.</p> </abstract>

2021 ◽  
Vol 9 (7) ◽  
pp. 1448
Author(s):  
Lei Gao ◽  
Jinbiao Ma ◽  
Yonghong Liu ◽  
Yin Huang ◽  
Osama Abdalla Abdelshafy Mohamad ◽  
...  

Endophytes associated with halophytes may contribute to the host’s adaptation to adverse environmental conditions through improving their stress tolerance and protecting them from various soil-borne pathogens. In this study, the diversity and antifungal activity of endophytic bacteria associated with halophytic samples growing on the shore of the western Aral Sea in Uzbekistan were investigated. The endophytic bacteria were isolated from the nine halophytic samples by using the culture-dependent method and identified according to their 16S rRNA gene sequences. The screening of endophytic bacterial isolates with the ability to inhibit pathogenic fungi was completed by the plate confrontation method. A total of 289 endophytic bacterial isolates were isolated from the nine halophytes, and they belong to Firmicutes, Actinobacteria, and Proteobacteria. The predominant genera of the isolated endophytic bacteria were Bacillus, Staphylococcus, and Streptomyces, accounting for 38.5%, 24.7%, and 12.5% of the total number of isolates, respectively. The comparative analysis indicated that the isolation effect was better for the sample S8, with the highest diversity and richness indices. The diversity index of the sample S7 was the lowest, while the richness index of samples S5 and S6 was the lowest. By comparing the isolation effect of 12 different media, it was found that the M7 medium had the best performance for isolating endophytic bacteria associated with halophytes in the western Aral Sea Basin. In addition, the results showed that only a few isolates have the ability to produce ex-enzymes, and eight and four endophytic bacterial isolates exhibited significant inhibition to the growth of Valsa mali and Verticillium dahlia, respectively. The results of this study indicated that halophytes are an important source for the selection of microbes that may protect plant from soil-borne pathogens.


2021 ◽  
Vol 12 (2) ◽  
pp. 1143-1150
Author(s):  
Lavanya J ◽  
Chanthosh S ◽  
Reshma Shrii ◽  
Viknesh V ◽  
Deepika S ◽  
...  

The study was aimed to find an alternate approach for chemicals used in agriculture to avoid microbial infections. Fungal pathogens cause different types of plant diseases and affect a majority of edible crops by destroying the tissues of the plant in a direct or indirect mechanism. So, an alternative approach led to the development of biocontrol agents using endophytic  bacteria. A total of 8 endophytic bacteria were isolated from the root, stem, and leaves of radish (Raphanus sativus). The antagonistic activity of these bacteria against the 2 isolated plant pathogenic fungi was determined in vitro. Two out of eight bacteria showed more than 50% inhibitory activity against one fungus, were further characterized using the 16s rRNA sequencing method. On the basis of the phylogenetic tree of the 16s rRNA method, the endophytic bacterial samples were identified as Tonsilliphilus suis  and Exiguobacterium aurantiacum against plant pathogenic Aspergillus flavus  isolated from Raphanus sativus, which makes them highly suitable as an alternative for chemical fertilizers to provide resistance to plant pathogenic fungi. The cell wall degrading activities such as protease activity, amylase activity, and plant growth-promoting properties such as Hydrogen cyanide (HCN), Indole acetic acid (IAA), ammonia production of these endophytic bacteria were evaluated. The results show that T. suis  is the most effective strain for radish growth development.


2013 ◽  
Vol 726-731 ◽  
pp. 4525-4528
Author(s):  
Ping Yang ◽  
Qian Xu

T. asperellum is an important biocontrol fungus owing to their ability to antagonize plant pathogenic fungi. The biocontrol effects of T. asperellum were played by secreting many kinds of hydrolytic enzymes and antibiotics. T. asperellum producing more cell wall degrading enzymes when meeting plant pathogens. Moreover, the growth of the plant pathogens was inhibited by T. asperellum secondary metabolites. The yield of antibiotic 6-PP was 1.32 mg 6-PP/g mycelial dry weight. T. asperellum control plant pathogens through secreting cell wall degrading enzymes and producing antifungal metabolites.


Author(s):  
Ahmed A. Abdulrraziq ◽  
Sami M. Salih ◽  
Sultan F. Alnomasy ◽  
Ziyad M. Aldosari ◽  
Bader S. Alotaibi

Arum cyreniacum is an important member of the family of Araceae because of its bio-activities. Hence this work aimed to establish a link between Arum cyreniacum and its uses as bio-control against plant pathogenic fungi which had never hitherto been established. This work was carried out to evaluate the activity of the aqueous extracts of tubers, leaves, and flowers of Arum cyreniacum against three different types of pathogenic fungi, Fusarium solani, Rhizopus microspores and Aspergillus niger. The antifungal activity of the aqueous extracts of Arum cyreniacum was determined by poisoned food technique. The results showed that Arum cyreniacum had an inhibitory effect in a dose-dependent manner on Fusarium solani, Rhizopus microspores, while Aspergillus niger was resistant to all extracts. However, the great inhibition activity against tested fungi was associated with increasing concentrations of the aqueous extracts of Arum cyreniacum. Data in this work indicated that the use of Arum cyreniacum could be a valid alternative for bio-control of plant pathogenic fungi.


2020 ◽  
Author(s):  
Matthias Hahn ◽  
Gabriel Scalliet

CRISPR/Cas is a genome editing technology that has opened new dimensions in functional biology. In a recent publication, we present a highly efficient CRISPR/Cas technique for Botrytis cinerea, which dramatically increases our options to mutagenize and modify single or multiple genes. In this Perspectives article, we describe the essential features of the method, and demonstrate with several examples how it opens new avenues for unravelling the virulence mechanisms of Botrytis and other plant pathogenic fungi, and to accelerate research for the identification of new antifungal compounds.


1999 ◽  
Vol 89 (6) ◽  
pp. 506-517 ◽  
Author(s):  
Nicole Benhamou ◽  
Patrice Rey ◽  
Karine Picard ◽  
Yves Tirilly

The interaction between the oomycete Pythium oligandrum and various soilborne oomycete and fungal plant pathogens (P. ultimum, P. aphanidermatum, Fusarium oxysporum f. sp. radicis-lycopersici, Verticillium albo-atrum, Rhizoctonia solani, and Phytophthora megasperma) was studied by light and electron microscopy in order to assess the relative contribution of mycoparasitism and antibiosis in the antagonistic process. Scanning electron microscope investigations of the interaction regions showed that structural alterations of all pathogenic fungi and oomycetes (except for Phytophthora megasperma) occurred soon after contact with the antagonist. Light and transmission electron microscope studies of the interaction region between the antagonist and P. ultimum revealed that intimate contact between both partners preceded a sequence of degradation events including aggregation of host cytoplasm and penetration of altered host hyphae. Localization of the host wall cellulose component showed that cellulose was altered at potential penetration sites. A similar scheme of events was observed during the interaction between P. oligandrum and F. oxysporum f. sp. radicis-lycopersici, with the exception that complete loss of host protoplasm was associated with antagonist invasion. The interaction between P. oligandrum and R. solani resulted in an abnormal deposition of a wall-like material at potential penetration sites for the antagonist. However, the antagonist displayed the ability to circumvent this barrier and penetrate host hyphae by locally altering the chitin component of the host hyphal wall. Interestingly, antagonist cells also showed extensive alteration as evidenced by the frequent occurrence of empty hyphal shells. In the case of Phytophthora megasperma, hyphal interactions did not occur, but hyphae of the plant pathogen were damaged severely. At least two distinct mechanisms appear to be involved in the process of oomycete and fungal attack by P. oligandrum: (i) mycoparasitism, mediated by intimate hyphal interactions, and (ii) antibiosis, with alteration of the host hyphae prior to contact with the antagonist. However, the possibility that the antagonistic process may rely on the dual action of antibiotics and hydrolytic enzymes is discussed.


2018 ◽  
Vol 31 (2) ◽  
pp. 315-325 ◽  
Author(s):  
MARIA CAMILA DE BARROS SILVA LEITE ◽  
ARTHUR PRUDÊNCIO DE ARAUJO PEREIRA ◽  
ADIJAILTON JOSÉ DE SOUZA ◽  
FERNANDO DINI ANDREOTE ◽  
FERNANDO JOSÉ FREIRE ◽  
...  

ABSTRACT Cassava is mostly planted in sandy soils which are usually of low fertility, thereby making it necessary to perform beneficial associations with microorganisms that can promote their growth. In this perspective, the possibility of selecting bacterial isolates efficient in promoting the growth of the culture is evident, which can provide subsidies for future inoculants. The objective of this study was to isolate, identify, select and evaluate the genetic diversity of endophytic bacteria in roots and stems of cassava grown in Garanhuns - PE, with features involved in promoting plant growth. The isolation was performed on culture medium semisolid LGI-P. The selected isolates were evaluated for the potential to fix N2, as the ability to produce indole acetic acid, for their ability to solubilize inorganic phosphate and produce exopolysaccharides. Some bacterial isolates had their 16S rRNA gene sequenced by the Sanger method. A total of 52 endophytic bacteria isolates were obtained from cassava. Regarding the potential to fix N2, 15% of the isolates were positive. As for the production of IAA, 78% of the isolates produced this phytohormone in a medium with increased L-tryptophan. Approximately 31% of the isolates were able to solubilize inorganic phosphate and 60% had exopolysaccharide. The identification of 19 isolates allowed the grouping into six bacterial genera, namely: Achromobacter, Bacillus, Burkholderia, Enterobacter, Pantoea and Pseudomonas. Cassava plants grown in Garanhuns - PE present interaction with different groups of endophytic bacteria and there are bacterial groups with several characteristics involved in promoting plant growth.


2019 ◽  
Vol 20 (5) ◽  
Author(s):  
WARZATULLISNA WARZATULLISNA ◽  
LENNI FITRI ◽  
YULIA SARI ISMAIL

Abstract. Warzatullisna, Fitri L, Ismail YS. 2019. Potential of endophytic bacteria from rice root as potassium solvent. Biodiversitas 20: 1303-1308. Endophytic bacteria live in plant tissues and known to have many benefits for plant growth. One function of endophytic bacteria are known to be able to dissolve potassium. Potassium is one of the macronutrients that plays an important role in plant growth and development. This study aims to obtain endophytic bacterial isolates from the roots of rice plants (Oryza sativa L.) which have potential as potassium solvents, identify the endophytic bacteria in morphologically and physiologically, and analysis of the selected isolate 16S rRNA genes. Selected endophytic bacterial isolates from the test of dissolving potassium on medium Alexandrov, measured clear zone using calipers and continued with biochemical tests using KIT DL-96E also identified based on 16S rRNA gene and compared for their close relationship with reference strains available in the Bank Genes. Based on the isolation results, 7 isolates from the roots of rice were obtained. Six isolates of endophytic bacteria were able to dissolve potassium. EPK3 isolates were the isolates that are capable of dissolving the highest potassium in Alexandrov media with a 17.9 mm potassium dissolution index. EPK3 isolates also produce inhibit the growth of Xanthomonas oryzae with a 1.2 mm inhibition zone. Physiological identification showed that EPK3 isolates were Enterobacter cloaceae bacteria with 93.79% of similarity. Based on the 16SrRNA gene showed that EPK3 isolates were closely related to E. cloaceae strain SBP-8 with similarity rate is 99%.


2016 ◽  
Vol 90 (15) ◽  
pp. 6846-6863 ◽  
Author(s):  
Shin-Yi Lee Marzano ◽  
Berlin D. Nelson ◽  
Olutoyosi Ajayi-Oyetunde ◽  
Carl A. Bradley ◽  
Teresa J. Hughes ◽  
...  

ABSTRACTMycoviruses can have a marked effect on natural fungal communities and influence plant health and productivity. However, a comprehensive picture of mycoviral diversity is still lacking. To characterize the viromes of five widely dispersed plant-pathogenic fungi,Colletotrichum truncatum,Macrophomina phaseolina,Diaporthe longicolla,Rhizoctonia solani, andSclerotinia sclerotiorum, a high-throughput sequencing-based metatranscriptomic approach was used to detect viral sequences. Total RNA and double-stranded RNA (dsRNA) from mycelia and RNA from samples enriched for virus particles were sequenced. Sequence data were assembledde novo, and contigs with predicted amino acid sequence similarities to viruses in the nonredundant protein database were selected. The analysis identified 72 partial or complete genome segments representing 66 previously undescribed mycoviruses. Using primers specific for each viral contig, at least one fungal isolate was identified that contained each virus. The novel mycoviruses showed affinity with 15 distinct lineages:Barnaviridae,Benyviridae,Chrysoviridae,Endornaviridae,Fusariviridae,Hypoviridae,Mononegavirales,Narnaviridae,Ophioviridae,Ourmiavirus,Partitiviridae,Tombusviridae,Totiviridae,Tymoviridae, andVirgaviridae. More than half of the viral sequences were predicted to be members of theMitovirusgenus in the familyNarnaviridae, which replicate within mitochondria. Five viral sequences showed strong affinity with three families (Benyviridae,Ophioviridae, andVirgaviridae) that previously contained no mycovirus species. The genomic information provides insight into the diversity and taxonomy of mycoviruses and coevolution of mycoviruses and their fungal hosts.IMPORTANCEPlant-pathogenic fungi reduce crop yields, which affects food security worldwide. Plant host resistance is considered a sustainable disease management option but may often be incomplete or lacking for some crops to certain fungal pathogens or strains. In addition, the rising issues of fungicide resistance demand alternative strategies to reduce the negative impacts of fungal pathogens. Those fungus-infecting viruses (mycoviruses) that attenuate fungal virulence may be welcome additions for mitigation of plant diseases. By high-throughput sequencing of the RNAs from 275 isolates of five fungal plant pathogens, 66 previously undescribed mycoviruses were identified. In addition to identifying new potential biological control agents, these results expand the grand view of the diversity of mycoviruses and provide possible insights into the importance of intracellular and extracellular transmission in fungus-virus coevolution.


2018 ◽  
Vol 73 (5-6) ◽  
pp. 247-256 ◽  
Author(s):  
Waheda Rahman Ansary ◽  
Ferdous Rezwan Khan Prince ◽  
Effi Haque ◽  
Farzana Sultana ◽  
Helen M. West ◽  
...  

AbstractPlant growth-promoting bacteria that are also capable of suppressing plant pathogenic fungi play an important role in sustainable agriculture. There is a critical need for conducting research to discover, characterize and evaluate the efficacy of new strains of such bacteria in controlling highly aggressive plant pathogens. In this study, we isolated endophytic bacteria from medicinal plants of Bangladesh and evaluated their antagonistic capacity against an important phytopathogenic fungusSclerotinia sclerotiorum. Growth-promoting effects of those isolates on cucumber and rice seedlings were also assessed. Among 16 morphologically distinct isolates, BDR-2, BRtL-2 and BCL-1 significantly inhibited the growth ofS. sclerotiorumthrough induction of characteristic morphological alterations in hyphae and reduction of mycelial dry weight. When cucumber and rice seeds were treated with these endophytic bacteria, seven isolates (BCL-1, BDL-1, BRtL-2, BRtL-3, BDR-1, BDR-2 and BBoS-1) enhanced seed germination, seedling vigor, seedling growth and number of roots per plant at a varying level compared to untreated controls. All isolates produced high levels of indole-3-acetic acid (6 to 63 μg/mL) in vitro. Two most potential isolates, BDR-2 and BRtL-2, were identified asBacillus amyloliquefaciensandB. subtilis, respectively, based on the 16S rRNA gene sequencing. These results suggest that endophyticBacillusspecies from native medicinal plants have great potential for being used as natural plant growth promoter and biopesticides in sustainable crop production.


Sign in / Sign up

Export Citation Format

Share Document