scholarly journals Effects of nitrogen fertilization and nitrification inhibitor product on vegetative growth, production and oil quality in ‘Arbequina’ hedgerow and ‘Picual’ vase-trained orchards

2018 ◽  
Vol 68 (4) ◽  
pp. 215 ◽  
Author(s):  
A. Centeno ◽  
J. M. García ◽  
M. Gómez-del-Campo

Two experiments were carried out in olive orchards in the center of Spain over a three-year period. In this cold and dry area, growers traditionally apply large amounts of N with no experimental knowledge. An ‘Arbequina’ hedgerow and ‘Picual’ vase orchards were fertilized with two N-doses applied to the soil in spring with or without the nitrification inhibitor (DMPP). Vegetative growth, fruit and oil characteristics were evaluated. These variables were affected by the N-treatment during the 3rd year. The lowest N-application increased vegetative growth, while when N-leaf composition was higher than 2%, fruit dry weight, oil content and oil phenol content were reduced. ‘Picual’ did not respond to N-applications. The effect of DMPP on growth or production was not consistent and a lower phenolic content was obtained for ‘Arbequina’. Our results demonstrated that in this dry land, N-fertilization is not always necessary and oil quality can be negatively affected with high doses.

2011 ◽  
Vol 68 (2) ◽  
pp. 191-199 ◽  
Author(s):  
María Teresa Castellanos ◽  
María Jesús Cabello ◽  
María del Carmen Cartagena ◽  
Ana María Tarquis ◽  
Augusto Arce ◽  
...  

Nitrogen (N) is an important nutrient for melon (Cucumis melo L.) production. However there is scanty information about the amount necessary to maintain an appropriate balance between growth and yield. Melon vegetative organs must develop sufficiently to intercept light and accumulate water and nutrients but it is also important to obtain a large reproductive-vegetative dry weight ratio to maximize the fruit yield. We evaluated the influence of different N amounts on the growth, production of dry matter and fruit yield of a melon 'Piel de sapo' type. A three-year field experiment was carried out from May to September. Melons were subjected to an irrigation depth of 100% crop evapotranspiration and to 11 N fertilization rates, ranging 11 to 393 kg ha-1 in the three years. The dry matter production of leaves and stems increased as the N amount increased. The dry matter of the whole plant was affected similarly, while the fruit dry matter decreased as the N amount was increased above 112, 93 and 95 kg ha-1, in 2005, 2006 and 2007, respectively. The maximum Leaf Area Index (LAI), 3.1, was obtained at 393 kg ha-1 of N. The lowest N supply reduced the fruit yield by 21%, while the highest increased the vegetative growth, LAI and Leaf Area Duration (LAD), but reduced yield by 24% relative to the N93 treatment. Excessive applications of N increase vegetative growth at the expense of reproductive growth. For this melon type, rates about 90-100 kg ha-1 of N are sufficient for adequate plant growth, development and maximum production. To obtain fruit yield close to the maximum, the leaf N concentration at the end of the crop cycle should be higher than 19.5 g kg-1.


1989 ◽  
Vol 113 (2) ◽  
pp. 267-271 ◽  
Author(s):  
V. P. Singh ◽  
B. N. Chatterjee ◽  
D. V. Singh

SUMMARYHerbage and oil yields of Mentha arvensis (Japanese mint), M. piperita (peppermint) and M. spicata (spearmint) increased significantly with N fertilization up to 100 kg N/ha and those of M. citrata (bergamot mint) with up to 150 kg N/ha. Plant height, leaf: stem ratio and leaf area index increased with N application; and oil content decreased in all the species. Economic optimum doses of N for M. arvensis, M. piperita and M. spicata were 167, 153 and 145 kg N/ha, respectively and their oil yields expected from the response equation were 190, 103 and 50 kg/ha, respectively. The calculated optimum fertilizer rate for M. citrata was 225 kg N/ha, giving a yield of 193 kg oil/ha. Oil quality did not vary appreciably with N fertilization.


2020 ◽  
Vol 26 (1) ◽  
pp. 273-287
Author(s):  
Paulo de Tarso Lima Teixeira ◽  
Gilmar Schäfer ◽  
Marina Martinello Back ◽  
Henrique Belmonte Petry ◽  
Paulo Vitor Dutra de Souza

Rootstocks of ‘Rangpur’ Lime and ‘Swingle’ Citrumelo were grown in containers with substrate in a greenhouse, aiming to evaluate the effects of N (urea) fertilization on the vegetative growth and macronutrient content of the plant tissue. The experimental design was a factorial randomized block design with four repetitions, and each experimental plot was composed of five plants. Four doses of N (0, 2.0, 4.0 and 8.0 g.plant-1) were evaluated and applied every week (15 applications) to both of the rootstocks. After 200 days of transplanting, the following parameters were evaluated: vegetative growth and total content of macronutrients on the dry weight of the leaves, stems, and roots. ‘Rangpur’ Lime was more vigorous that ‘Swingle’ Citrumelo. ‘Rangpur’ Lime showed the greatest accumulation of plant dry weight with 3.38 g.plant-1 of N and a greater root dry weight with 2.03 g.plant-1. For ‘Swingle’ Citrumelo, 2.03 g.plant-1 of N provided a greater plant dry weight, however, nitrogen fertilization reduced the root:canopy ratio of the rootstocks. The leaf content of N and P were favored by high doses of N in the tested range. Intermediate doses favored the Ca and Mg leaf contents. The leaf K content was decreased by nitrogen fertilization.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 889
Author(s):  
Aviad Perry ◽  
Noemi Tel-Zur ◽  
Arnon Dag

Jojoba (Simmondsia chinensis) is a wax crop cultivated mainly in arid and semi-arid regions. This crop has been described as an alternate-bearing plant, meaning that it has a high-yield year (“on-year”) followed by a low-yield year (“off-year”). We investigated the effect of fruit load on jojoba’s vegetative and reproductive development. For two consecutive years, we experimented with two high-yielding cultivars—Benzioni and Hazerim—which had opposite fruit loads, i.e., one was under an on-year load, while the other was under an off-year load simultaneously. We found that removing the developing fruit from the shoot during an off-year promotes further vegetative growth in the same year, whereas in an on-year, this action has no effect. Moreover, after fruit removal in an on-year, there was a delay in vegetative growth renewal in the consecutive year, suggesting that the beginning of the growing period is dependent on the previous year’s yield load. We found that seed development in the 2018 season started a month earlier than in the 2017 season in both cultivars, regardless of fruit load. This early development was associated with higher wax content in the seeds. Hence, the wax accumulation rate, as a percentage of dry weight, was affected by year and not by fruit load. However, on-year seeds stopped growing earlier than off-year seeds, resulting in smaller seeds and an overall lower amount of wax per seed.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 260 ◽  
Author(s):  
Alessandro Calamai ◽  
Enrico Palchetti ◽  
Alberto Masoni ◽  
Lorenzo Marini ◽  
David Chiaramonti ◽  
...  

In recent years, biochar has generated global interest in the areas of sustainable agriculture and climate adaptation. The main positive effects of biochar were observed to be the most remarkable when nutrient-rich feedstock was used as the initial pyrolysis material (i.e., anaerobic digestate). In this study, the influence of solid anaerobic digestate and biochar that was produced by the slow pyrolysis of solid digestate was evaluated by comparing the differences in the crop growth performances of Pelargonium graveolens. The experiment was conducted in a greenhouse while using three different growth media (i.e., solid digestate, biochar, and vermiculite). The results indicated that: (i) the pyrolysis of solid digestate caused a reduction in the bulk density (−52%) and an increase in the pH (+16%) and electrical conductivity (+9.5%) in the derived biochar; (ii) the best crop performances (number of leaves, number of total branches, and plant dry weight) were found using biochar, particularly for plant dry weight (+11.4%) and essential oil content (+9.4%); (iii) the essential oil quality was slightly affected by the growth media; however, the main chemical components were found within the acceptable range that was set by international standard trade; and, iv) biochar induced the presence of leaf chlorosis in Pelargonium graveolens.


1991 ◽  
Vol 71 (3) ◽  
pp. 943-946 ◽  
Author(s):  
S. Freyman ◽  
P. M. Toivonen ◽  
W. C. Lin ◽  
P. W. Perrin ◽  
J. W. Hall

Increasing rates of field nitrogen (N) application (0, 100, 200, 300, 400 and 500 kg N ha−1) resulted in markedly higher yields of winter white cabbage (Brassica oleracea L. var. capitata 'Bartolo') due to larger head size. Glucose and fructose contents increased with increased nitrogen. In contrast, ascorbic acid and sucrose contents declined slightly with increased nitrogen. Nitrogen rate had little effect on storage losses. The results indicated that increased N fertilization provided overall benefit to cabbage production. Key words: Cabbage, nitrogen fertilization, storage losses, yield


1956 ◽  
Vol 7 (2) ◽  
pp. 98 ◽  
Author(s):  
JN Black

Changes in the pre-emergence distribution of dry matter in subterranean clover (Trifolium subterraneum L.) variety Bacchus Marsh were followed at 21°C, using three sizes of seed and three depths of sowing, ½, 1¼, and 2 in. Decreasing seed size and increasing depth of sowing both reduce the weight of the cotyledons a t emergence. Seed of the three sizes were sown a t three depths in pot culture a t staggered intervals so that emergence was simultaneous. Dry weight in the early vegetative stage was proportional to seed size, and total leaf area and leaf numbers showed similar trends. Plants of each seed size grew at the same relative rate. No effect of depth of sowing could be detected, and this was shown to be due to the cotyledon area a t emergence being constant for any given seed size, regardless of varying depth of sowing and hence of cotyledon weight. It was concluded that seed size in a plant having epigeal germination and without endosperm is of importance: firstly, in limiting the maximum hypocotyl elongation and hence depth of sowing, and secondly, in determining cotyledon area. Cotyledon area in turn influences seedling growth, which is not affected by cotyledon weight. Once emergence has taken place, cotyledonary reserves are of no further significance in the growth of the plants.


Revista CERES ◽  
2012 ◽  
Vol 59 (5) ◽  
pp. 689-694 ◽  
Author(s):  
Thiago de Oliveira Vargas ◽  
Ellen Rúbia Diniz ◽  
Ricardo Henrique Silva Santos ◽  
Alysson Roberto de Almeida ◽  
Segundo Urquiaga ◽  
...  

Roots effect is not generally considered in studies assessing the performance of crops in response to green manuring. However, such effect can contribute to a better understanding of crop rotation. The aim of this study was to assess the effect of root and shoot of two legumes on the production of cabbage. The experiment was conducted in pots of 10 liters containing substrate of 2:1 soil/sand. The experiment was arranged in a factorial scheme (2x3 + 2) in a randomized block design with five replicates using two legume species (Crotalaria juncea L. and Canavalia ensiformis L), three plant parts (root, shoot, or whole plant), and two additional treatments (mineral fertilization with 100% and 50% of the recommended dose of N for growing cabbage). Pots with legume treatments received mineral fertilizer with 50% of the recommended dose of N for growing cabbage. The experimental plot consisted of a pot containing one plant of cabbage. Legumes were grown in pots and harvested at 78 days. The root biomass was determined in extra pots. Production was assessed using head fresh and dry weight. The application of the whole plant of both legume species reduced cabbage production. However, root or shoot of both legume species was equivalent to 50% of mineral N fertilization required for the cultivation of cabbage.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 366
Author(s):  
Silit Lazare ◽  
Yang Lyu ◽  
Uri Yermiyahu ◽  
Yehuda Heler ◽  
Alon Ben-Gal ◽  
...  

Quantification of actual plant consumption of nitrogen (N) is necessary to optimize fertilization efficiency and minimize contamination of earth resources. We examined the performance of fruit-bearing pomegranate trees grown in soilless media and exposed to eight N-fertigation treatments, from 5 to 200 mg N L−1. Reproductive and vegetative indices were found to be optimal when 20 to 70 mg N L−1 was supplied. Nitrogen application levels over 70 mg L−1 reduced pomegranate development and reproduction. N uptake in low-level treatments was almost 100% and decreased gradually, down to 13% in 200 mg N L−1 treatment. N usage efficiency was maximized under 20 mg N L−1, in which case 80% to 90% of added N was taken up by the trees. At high N application, its efficiency was reduced with less than 50% utilized by the trees. Leaf N increased to a plateau as a function of increasing irrigation solution N, maximizing at ~15 to 20 mg N g−1. Therefore, analysis of diagnostic leaves is not a valid method to identify excessive detrimental N. The results should be valuable in the development of efficient, sustainable, environmentally responsible protocols for N fertilization in commercial pomegranate orchards, following adaptation and validation to real soil field conditions.


2012 ◽  
Vol 36 (2) ◽  
pp. 475-483 ◽  
Author(s):  
José Hildernando Bezerra Barreto ◽  
Ismail Soares ◽  
José Almeida Pereira ◽  
Antonio Marcos Esmeraldo Bezerra ◽  
José Aridiano Lima de Deus

Nitrogen is the most important nutrient for rice (Oryza sativa L) yields. This study aimed to evaluate the response of upland rice cultivars to N rate and application times in a randomized block design, in subdivided plots with four replications. The studied factors were five rice cultivars (BRS MG Curinga, BRS Monarca, BRS Pepita, BRS Primavera, and BRS Sertaneja), three application times (100 % at planting, 50 % at planting - 50 % at tillering and 100 % at tillering) and four N rates (0, 50, 100, and 150 kg ha-1). All cultivars responded to increased rates and different times of N application, especially BRS Primavera and BRS Sertaneja, which were the most productive when 50 % N rates were applied at sowing and 50 % at tillering. The response of cultivar BRS Monarca to N fertilization was best when 100 % of the fertilizer was applied at tillering.


Sign in / Sign up

Export Citation Format

Share Document