A Comparison Study on Energy Consumption of Urban Residential Buildings in Different Climatic Zones

2010 ◽  
Vol 171-172 ◽  
pp. 441-444
Author(s):  
Wei Cai ◽  
Zhao Hui Wu ◽  
Huang Wang ◽  
Xiao Man Du

Built environment is determined by outside climate condition. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window to wall. In order to determine how building energy efficiency works in different climate zones, the variation rule of some aggregative indicators and building energy efficiency rates were analyzed by dynamic simulation. The results show that energy conservation potential which is brought by the decrease of builidng shape coefficient is the largest in hot summer and cold winter zone such as Shanghai, and the effect is mainly brought by insulation measures added to exterior walls.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8223
Author(s):  
Zhixing Li ◽  
Mimi Tian ◽  
Yafei Zhao ◽  
Zhao Zhang ◽  
Yuxi Ying

Building energy waste has become one of the major challenges confronting the world today, so specifications and targets for building energy efficiency have been put forward in countries around the world in recent years. The schematic design stage matters a lot for building energy efficiency, while most architects nowadays are less likely to make energy efficiency design decisions in this stage due to the lack of necessary means and methods for analysis. An integrated multi-objective multivariate framework for optimization analysis is proposed for the schematic design stage in the paper. Here, the design parameters of the building morphology and the design parameters of the building envelope are integrated for analysis, and an integrated performance prediction model is established for low-rise and medium-rise residential buildings. Then, a comparison of the performance indicators of low-rise and medium-rise residential buildings under five typical urban climatic conditions is carried out, and the change patterns of the lighting environment, thermal environment, building energy demand, and life cycle cost of residential buildings in each city under different morphological parameters and design parameters of the building envelope are summarized. Specific analysis methods and practical tools are provided in the study for architectural design to ensure thermal comfort, lighting comfort, low energy consumption, and low life-cycle cost requirement, and this design method can inspire and guide the climate adaptation analysis and design process of low-rise and medium-rise residential buildings in China, improve architects’ perception of energy-saving design principles of low-rise and medium-rise residential buildings on the ontological level, as well as provide them with a method to follow and a case to follow in the actual design process.


2012 ◽  
Vol 450-451 ◽  
pp. 1425-1428
Author(s):  
Xiao Ping Feng ◽  
Hui Lin ◽  
Yue Wang ◽  
Hu Cheng

Building shape coefficient is an important factor in building energy saving design. In order to analyze the influence of shape coefficient to the energy consumption, a typical residential building is simulated by BECS software to analyze the changing regular patterns of the energy consumption for heating and air conditioning while the building shape coefficient is made different. The relationship between building height and shape coefficient, and the impact of the building plane layout on the energy consumption are also analyzed. The results show that the reduction of shape coefficient is benefit to enhance the effect of energy saving.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


2012 ◽  
Vol 253-255 ◽  
pp. 716-719
Author(s):  
Yang Wang ◽  
Yan Chen

Under the circumstances of the increasing energy consumption of buildings, the development and application of building energy efficiency technology have attracted the attention of many people. As one of the important building energy efficiency technologies, roof greening has played a positive role in building a low-carbon and energy-saving society. This paper analyzes the technological characteristics and the formation methods of the roof greening system. It also expounds on the role of roof greening in building energy conservation.


2019 ◽  
Vol 14 (2) ◽  
pp. 109-136
Author(s):  
Chaitali Basu ◽  
Virendra Kumar Paul ◽  
M.G. Matt Syal

The energy performance of an existing building is the amount of energy consumed to meet various needs associated with the standardized use of a building and is reflected in one or more indicators known as Building Energy Performance Indicators (EnPIs). These indicators are distributed amongst six main factors influencing energy consumption: climate, building envelope, building services and energy systems, building operation and maintenance, occupants' activities and behaviour, and indoor environmental quality. Any improvement made to either the existing structure or the physical and operational upgrade of a building system that enhances energy performance is considered an energy efficiency retrofit. The main goal of this research is to support the implementation of multifamily residential building energy retrofits through expert knowledge consensus on EnPIs for energy efficiency retrofit planning. The research methodology consists of a comprehensive literature review which has identified 35 EnPIs for assessing performance of existing residential buildings, followed by a ranking questionnaire survey of experts in the built-environment to arrive at a priority listing of indicators based on mean rank. This was followed by concordance analysis and measure of standard deviation. A total of 280 experts were contacted globally for the survey, and 106 completed responses were received resulting in a 37.85% response rate. The respondents were divided into two groups for analysis: academician/researchers and industry practitioners. The primary outcome of the research is a priority listing of EnPIs based on the quantitative data from the knowledge-base of experts from these two groups. It is the outcome of their perceptions of retrofitting factors and corresponding indicators. A retrofit strategy consists of five phases for retrofitting planning in which the second phase comprises an energy audit and performance assessment and diagnostics. This research substantiates the performance assessment process through the identification of EnPIs.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6305
Author(s):  
Haibo Guo ◽  
Lu Huang ◽  
Wenjie Song ◽  
Xinyue Wang ◽  
Hongnan Wang ◽  
...  

As the climate changed in recent years, an increase in summer indoor temperatures in severe cold and cold regions of China has started to affect thermal comfort. However, the local design standard for energy efficiency does not recognize this phenomenon. This paper reports the potential overheating phenomenon in residential buildings and examines the rationale for the current thermal designs adopted in severe cold and cold regions of China. In this study, the two most commonly used building materials, reinforced concrete (RC) and cross laminated timber (CLT), are used separately in the design of an 18-story residential building envelope located in six different cities in the severe cold and cold regions. The energy consumption and indoor operative temperatures during the operation of these buildings are simulated using Integrated Environmental Solutions Virtual Environment (IES VE). The results demonstrate that both the RC and the CLT buildings experience varying degrees of overheating in any climate subregion. The CLT buildings have longer overheating hours compared to the RC buildings, especially in the cold regions. The results also indicate that for apartments on higher stories, the cooling energy consumption and indoor temperature also increase gradually. The research results suggest that the local design standard for energy efficiency needs to be adjusted by adding thermal design methods for summer to reduce the periods of overheating.


2013 ◽  
Vol 291-294 ◽  
pp. 945-948 ◽  
Author(s):  
Feng Qin Yu ◽  
Bei Tian ◽  
Xin Zhang ◽  
Qiang Wang ◽  
Dan Shi Yu ◽  
...  

The building energy consumption is one of three in China's energy consumption, the detection and monitoring for energy consumption of building is the basis for the work of building energy efficiency. This article describes a perception, monitoring and management system of building energy consumption based on Internet of Things technology architecture, in the system, various energy instrumentation is installed inside the building and measurement all kinds of energy consumption data in the perception layer, collection daterminal data connected to the RS485 bus access gateway for data transmission via Ethernet or mobile communication network in the network layer and transport layer, deal with the statistical analysis of the energy consumption data in the application layer. The system has been successfully applied to more than 50 large-scale public building to implement energy consumption monitoring and management, and the support of the underlying data for building energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document