scholarly journals Assessing Effects of Variation in Global Climate Data Sets on Spatial Predictions from Climate Envelope Models

2014 ◽  
Vol 5 (1) ◽  
pp. 14-25 ◽  
Author(s):  
James I. Watling ◽  
Robert J. Fletcher ◽  
Carolina Speroterra ◽  
David N. Bucklin ◽  
Laura A. Brandt ◽  
...  

Abstract Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

Author(s):  
Ibrahima Hathie ◽  
Dilys MacCarthy ◽  
Bright Freduah ◽  
Mouhamed Ly ◽  
Ahmadou Ly ◽  
...  

The Agricultural Model Intercomparison and Improvement Project (AgMIP) developed protocol-based methods for Regional Integrated Assessment (RIA) of agricultural systems. These methods have been applied by teams of scientists working with regional and national stakeholders across Sub-Saharan Africa and South Asia. This paper describes the data sets that were used to implement the AgMIP RIA methods for the Nioro region of Senegal. The goal of the RIA is to assess the potential impacts of climate change on the principal agricultural system in the Senegal peanut basin comprised of peanut, millet, maize and other minor crops and livestock, and to assess adaptations of that system to climate change, under current as well as future climate and socio-economic conditions. The data sets include: the Representative Agricultural Pathways (RAPs) developed for Nioro from 2000-2050; climate data used to implement crop yield simulations; the data used to parameterize the Agricultural Production Systems sIMulator (APSIM) and the Decision Support System for Agrotechnology Transfer (DSSAT) crop models, which include historical climate data and future climate scenarios; and the data used to parameterize the Tradeoff Analysis Model for Multi-dimensional Impact Assessment (TOA-MD) economic simulation model. The analysis is structured around four AgMIP “core questions'' of climate impact assessment.


2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2020 ◽  
Vol 163 (3) ◽  
pp. 1329-1351 ◽  
Author(s):  
Anne Gädeke ◽  
Valentina Krysanova ◽  
Aashutosh Aryal ◽  
Jinfeng Chang ◽  
Manolis Grillakis ◽  
...  

AbstractGlobal Water Models (GWMs), which include Global Hydrological, Land Surface, and Dynamic Global Vegetation Models, present valuable tools for quantifying climate change impacts on hydrological processes in the data scarce high latitudes. Here we performed a systematic model performance evaluation in six major Pan-Arctic watersheds for different hydrological indicators (monthly and seasonal discharge, extremes, trends (or lack of), and snow water equivalent (SWE)) via a novel Aggregated Performance Index (API) that is based on commonly used statistical evaluation metrics. The machine learning Boruta feature selection algorithm was used to evaluate the explanatory power of the API attributes. Our results show that the majority of the nine GWMs included in the study exhibit considerable difficulties in realistically representing Pan-Arctic hydrological processes. Average APIdischarge (monthly and seasonal discharge) over nine GWMs is > 50% only in the Kolyma basin (55%), as low as 30% in the Yukon basin and averaged over all watersheds APIdischarge is 43%. WATERGAP2 and MATSIRO present the highest (APIdischarge > 55%) while ORCHIDEE and JULES-W1 the lowest (APIdischarge ≤ 25%) performing GWMs over all watersheds. For the high and low flows, average APIextreme is 35% and 26%, respectively, and over six GWMs APISWE is 57%. The Boruta algorithm suggests that using different observation-based climate data sets does not influence the total score of the APIs in all watersheds. Ultimately, only satisfactory to good performing GWMs that effectively represent cold-region hydrological processes (including snow-related processes, permafrost) should be included in multi-model climate change impact assessments in Pan-Arctic watersheds.


2020 ◽  
Author(s):  
Wei Yuan ◽  
Shuang-ye Wu ◽  
Shugui Hou

<p>This study aims to establish future vegetation changes in the east and central of northern China (ECNC), an ecologically sensitive region in the transition zonal from humid monsoonal to arid continental climate. The region has experienced significant greening in the past several decades. However, few studies exist on how vegetation will change with future climate change, and great uncertainties exist due to complex, and often spatially non-stationary, relationships between vegetation and climate. In this study, we first used historical NDVI and climate data to model this spatially variable relationship with Geographically Weighted Logit Regression. We found that temperature and precipitation could explain, on average, 43% of NDVI variance, and they could be used to model NDVI fairly well. We then establish future climate change using the output of 11 CMIP6 models for the medium (SSP245) and high (SSP585) emission scenarios for the mid-century (2041-2070) and late-century (2071-2100). The results show that for this region, both temperature and precipitation will increase under both scenarios. By late-century under SSP585, precipitation is projected to increase by 25.12% and temperature is projected to increase 5.87<sup>o</sup>C in ECNC. Finally, we used future climate conditions as input for the regression models to project future vegetation (indicated by NDVI). We found that NDVI will increase under climate change. By mid-century, the average NDVI in ECNC will increase by 0.024 and 0.021 under SSP245 and SSP585. By late-century, it will increase by 0.016 and 0.006 under SSP245 and SSP585 respectively. Although NDVI is projected to increase, the magnitude of increase is likely to diminish with higher emission scenarios, possibly due to the benefit of precipitation increase being gradually encroached by the detrimental effects of temperature increase. Moreover, despite the overall NDVI increase, the area likely to suffer vegetation degradation will also expands, particularly in the western part of ECNC. With higher emissions and later into the century, region with low NDVI is likely to shift and/or expand north-forward. Our results could provide important information on possible vegetation changes, which could help to develop effective management strategies to ensure ecological and economic sustainability in the future.</p>


2014 ◽  
Vol 5 (1) ◽  
pp. 617-647
Author(s):  
Y. Yin ◽  
Q. Tang ◽  
X. Liu

Abstract. Climate change may affect crop development and yield, and consequently cast a shadow of doubt over China's food self-sufficiency efforts. In this study we used the model projections of a couple of global gridded crop models (GGCMs) to assess the effects of future climate change on the potential yields of the major crops (i.e. wheat, rice, maize and soybean) over China. The GGCMs were forced with the bias-corrected climate data from 5 global climate models (GCMs) under the Representative Concentration Pathways (RCP) 8.5 which were made available by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of rice may increase over a large portion of China. Climate change may benefit food productions over the high-altitude and cold regions where are outside current main agricultural area. However, the potential yield of maize, soybean and wheat may decrease in a large portion of the current main crop planting areas such as North China Plain. Development of new agronomic management strategy may be useful for coping with climate change in the areas with high risk of yield reduction.


2016 ◽  
Vol 9 (1) ◽  
pp. 15-27
Author(s):  
Proloy Deb ◽  
S. Babel

An investigation was carried out to assess the impacts of climate change on rainfed maize yield using a yield response to water stress model (AquaCrop) and to identify suitable adaptation options to minimize the negative impacts on maize yield in East Sikkim, North East India. Crop management and yield data was collected from the field experimental plots for calibration and validation of the model for the study area. The future climate data was developed for two IPCC emission scenarios A2 and B2 based on the global climate model HadCM3 with downscaling of climate to finer spatial resolution using the statistical downscaling model, SDSM. The impact study revealed that there is an expected reduction in maize yield of 12.8, 28.3 and 33.9% for the A2 scenario and 7.5, 19.9 and 29.9% for the B2 scenario during 2012-40, 2041-70 and 2071-99 respectively compared to the average yield simulated during the period of 1961-1990 with observed climate data. The maize yield of same variety under future climate can be maintained or improved from current level by changing planting dates, providing supplement irrigation and managing optimum nutrient.Journal of Hydrology and Meteorology, Vol. 9(1) 2015, p.15-27


Author(s):  
Christian Birkel ◽  
Joni Dehaspe ◽  
Andrés Chavarría-Palma ◽  
Nelson Venegas-Cordero ◽  
Rene Capell ◽  
...  

Efforts to protect tropical ecosystems aim at implementing biological corridors across the national territory of Costa Rica. However, potential near-future climate change challenges the effectiveness of such conservation measures. For this purpose, we developed near-future climate change scenarios at high spatial resolution using open-access global data from the Copernicus Climate Data Store (CDS). These projections resulted from downscaling (to a 1km2 national grid) and quantile-mapping bias-correction of the Essential Climate Variables Global Circulation Model (ECV_GCM) ensemble mean from the CDS using a moderate Representative Concentration Pathway 4.5 (RCP4.5). Projections were evaluated with limited local station data and applied to generate future ecosystem indicators (Holdridge Life Zones, HLZs). We show significantly increasing temperatures of 2.6°C with a spatial variability of ± 0.4°C for Costa Rica until 2040 with local differences (higher temperatures projected for the southern Costa Rican Caribbean). The future mean annual precipitation showed slightly wetter conditions (120 ± 43 mm/year) and most prominently in the Costa Rican Caribbean and south Pacific, but no significant drying in the north of Costa Rica by 2040. The bias-corrected climate data were aggregated to decadal and 30-year average (1971–2040) life zone ecosystem indicators that could potentially show ecosystem shifts. Changes in the life zones are most likely due to warmer temperatures and to a lesser extent caused by projected wetter conditions. Shifts are more likely to occur at higher elevations with a potential loss of the sub-tropical rainforest ecosystem. The projections support diminishing tropical dry forests and slightly increasing tropical rain and wet forests in the biological corridors of the driest and wettest regions, respectively. A countrywide spatial uniformity of dominating tropical moist forests (increase from 24% to 49%) at the expense of other HLZs was projected by 2040.


2020 ◽  
Author(s):  
Emanuele Massetti ◽  
Emanuele Di Lorenzo

<p>Estimates of physical, social and economic impacts of climate change are less accurate than usually thought because the impacts literature has largely neglected the internal variability of the climate system. Climate change scenarios are highly sensitive to the initial conditions of the climate system due the chaotic dynamics of weather. As the initial conditions of the climate system are unknown with a sufficiently high level of precision, each future climate scenario – for any given model parameterization and level of exogenous forcing – is only one of the many possible future realizations of climate. The impacts literature usually relies on only one realization randomly taken out of the full distribution of future climates. Here we use one of the few available large scale ensembles produced to study internal variability and an econometric model of climate change impacts on United States (US) agricultural productivity to show that the range of impacts is much larger than previously thought. Different ensemble members lead to significantly different impacts. Significant sign reversals are frequent. Relying only on one ensemble member leads to incorrect conclusions on the effect of climate change on agriculture in most of the US counties. Impacts studies should start using large scale ensembles of future climate change to predict damages. Climatologists should ramp-up efforts to run large ensembles for all GCMs, for at least the most frequently used scenarios of exogenous forcing.</p>


2014 ◽  
Vol 5 (4) ◽  
pp. 625-632 ◽  
Author(s):  
Rishiraj Dutta

The analysis of this study focused on the tea growing areas of Northeast India to provide predictions for future climate scenarios and its impact on tea production by 2050. The applied methodology involves a combination of current climate data with future climate change predictions from different models for 2050 as derived by WorldClim and IPCC4 (CIAT recommended). The results showed the possibility of an increase in average temperature by 2 °C in 2050, while not much variation is observed in the rainfall pattern. A change in tea production period is also expected by 2050 making tea planters look for alternative crops as an adaptive measure to keep the industry on its feet. With such expected impacts on tea production, the planters would need to make changes in their management practices to adapt to the evolving conditions and environment. In this study, the climate data were used as input to DIVA GIS Model. Monthly climate data were fed into Cranfield University Plantation Productivity Analysis for Tea Model (CUPPA Tea Model) to simulate observed and predicted yields. The study further shows that the overall climate will become less seasonal in terms of variation through the years followed by expected variations in monthly precipitation during the peak production months.


2019 ◽  
Vol 11 (8) ◽  
pp. 986 ◽  
Author(s):  
Joanne Nightingale ◽  
Jonathan P.D. Mittaz ◽  
Sarah Douglas ◽  
Dick Dee ◽  
James Ryder ◽  
...  

Decision makers need accessible robust evidence to introduce new policies to mitigate and adapt to climate change. There is an increasing amount of environmental information available to policy makers concerning observations and trends relating to the climate. However, this data is hosted across a multitude of websites often with inconsistent metadata and sparse information relating to the quality, accuracy and validity of the data. Subsequently, the task of comparing datasets to decide which is the most appropriate for a certain purpose is very complex and often infeasible. In support of the European Union’s Copernicus Climate Change Service (C3S) mission to provide authoritative information about the past, present and future climate in Europe and the rest of the world, each dataset to be provided through this service must undergo an evaluation of its climate relevance and scientific quality to help with data comparisons. This paper presents the framework for Evaluation and Quality Control (EQC) of climate data products derived from satellite and in situ observations to be catalogued within the C3S Climate Data Store (CDS). The EQC framework will be implemented by C3S as part of their operational quality assurance programme. It builds on past and present international investment in Quality Assurance for Earth Observation initiatives, extensive user requirements gathering exercises, as well as a broad evaluation of over 250 data products and a more in-depth evaluation of a selection of 24 individual data products derived from satellite and in situ observations across the land, ocean and atmosphere Essential Climate Variable (ECV) domains. A prototype Content Management System (CMS) to facilitate the process of collating, evaluating and presenting the quality aspects and status of each data product to data users is also described. The development of the EQC framework has highlighted cross-domain as well as ECV specific science knowledge gaps in relation to addressing the quality of climate data sets derived from satellite and in situ observations. We discuss 10 common priority science knowledge gaps that will require further research investment to ensure all quality aspects of climate data sets can be ascertained and provide users with the range of information necessary to confidently select relevant products for their specific application.


Sign in / Sign up

Export Citation Format

Share Document