Projected climate change impacts on tropical life zones in Costa Rica

Author(s):  
Christian Birkel ◽  
Joni Dehaspe ◽  
Andrés Chavarría-Palma ◽  
Nelson Venegas-Cordero ◽  
Rene Capell ◽  
...  

Efforts to protect tropical ecosystems aim at implementing biological corridors across the national territory of Costa Rica. However, potential near-future climate change challenges the effectiveness of such conservation measures. For this purpose, we developed near-future climate change scenarios at high spatial resolution using open-access global data from the Copernicus Climate Data Store (CDS). These projections resulted from downscaling (to a 1km2 national grid) and quantile-mapping bias-correction of the Essential Climate Variables Global Circulation Model (ECV_GCM) ensemble mean from the CDS using a moderate Representative Concentration Pathway 4.5 (RCP4.5). Projections were evaluated with limited local station data and applied to generate future ecosystem indicators (Holdridge Life Zones, HLZs). We show significantly increasing temperatures of 2.6°C with a spatial variability of ± 0.4°C for Costa Rica until 2040 with local differences (higher temperatures projected for the southern Costa Rican Caribbean). The future mean annual precipitation showed slightly wetter conditions (120 ± 43 mm/year) and most prominently in the Costa Rican Caribbean and south Pacific, but no significant drying in the north of Costa Rica by 2040. The bias-corrected climate data were aggregated to decadal and 30-year average (1971–2040) life zone ecosystem indicators that could potentially show ecosystem shifts. Changes in the life zones are most likely due to warmer temperatures and to a lesser extent caused by projected wetter conditions. Shifts are more likely to occur at higher elevations with a potential loss of the sub-tropical rainforest ecosystem. The projections support diminishing tropical dry forests and slightly increasing tropical rain and wet forests in the biological corridors of the driest and wettest regions, respectively. A countrywide spatial uniformity of dominating tropical moist forests (increase from 24% to 49%) at the expense of other HLZs was projected by 2040.

2009 ◽  
Vol 276 (1663) ◽  
pp. 1883-1888 ◽  
Author(s):  
Maria Byrne ◽  
Melanie Ho ◽  
Paulina Selvakumaraswamy ◽  
Hong D. Nguyen ◽  
Symon A. Dworjanyn ◽  
...  

Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20–26°C, pH 7.6–8.2) were tested in all combinations for the ‘business-as-usual’ scenario, with 20°C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4°C reduced cleavage by 40 per cent and +6°C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6°C. At 26°C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


Author(s):  
S. Rani ◽  
S. Sreekesh ◽  
P. Krishnan

<p><strong>Abstract.</strong> Appraisal of potential evapotranspiration (PET) is needed for estimating the agricultural water requirement and understanding hydrological processes in an arena. Therefore, aim of the paper was to estimate the PET in the upper Beas basin, situated in the Western Indian Himalaya, under future climate change scenarios (by mid-21st century). Climate data (1969&amp;ndash;2010) of Manali, Bhuntar and Katrain were obtained from India Meteorological Department (IMD) and the Indian Agricultural Research Institute (IARI). Landsat data were used for mapping land use/land cover (LULC) conditions of the basin through decision tree technique. Elevation detail of the catchment area is derived from the Cartosat-1 digital elevation model (DEM). Simulations of PET were done by the Soil and Water Assessment Tool (SWAT) model. The model was calibrated using the average monthly discharge data from Thalout station. The study found fluctuations in PET under different climate change scenarios. It is likely to increase in near future owing to the rise in temperature. The higher water demand can be met from the excess snowmelt water reaching the lower basin area during the cropping seasons. This study will be helpful to understand water availability conditions in the upper Beas basin in the near future.</p>


2014 ◽  
Vol 75 (S2) ◽  
pp. 139-154 ◽  
Author(s):  
Shifeng Huang ◽  
Wenbin Zang ◽  
Mei Xu ◽  
Xiaotao Li ◽  
Xuecheng Xie ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2021 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Patricia Guzmán ◽  
Patricia Tarín-Carrasco ◽  
María Morales-Suarez-Varela

&lt;p&gt;Air pollution has a serious impact on health and this problem will be aggravated under the action of climate change. This climate penalty can play an important role when trying to assess future impacts of air pollution on several pathologies. Among these diseases, the scientific literature is scarce when referring to the influence of atmospheric pollutants on neurodegenerative diseases for future climate change scenarios. Under this framework, this contribution evaluates the incidence of dementia (Alzheimer's disease and vascular dementia) occurring in Europe due to exposure of air pollution (essentially NO&lt;sub&gt;2&lt;/sub&gt; and PM2.5) for the present climatic period (1991-2010) and for a future climate change scenario (RCP8.5, 2031-2050). The GEMM methodology has been applied to climatic air pollution simulations using the chemistry/climate regional model WRF-Chem. Present population data were obtained from NASA's Center for Socioeconomic Data and Applications (SEDAC); while future population projections for the year 2050 were derived from the United Nations (UN) Department of Economic and Social Affairs-Population Dynamics.&lt;/p&gt;&lt;p&gt;Overall, the estimated incidence of Alzheimer's disease and vascular dementia associated to air pollution over Europe is 498,000 [95% confidence interval (95% CI) 348,600-647,400] and 314,000 (95% CI 257,500-401,900) new cases per year, respectively. An important increase in the future incidence is projected (around 72% for both types of dementia) when considering the effect of climate change together with the foreseen changes in the dynamics of population (expected aging of European population). The climate penalty has a limited effect on the total changes of Alzheimer's disease and vascular dementia (approx. 0.5%), since the large increase in new annual cases over southern Europe is offset by the decrease of the incidence associated to these pathologies over more northern countries, favored by an improvement of air pollution caused by the projected enhancement of rainfall.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document