scholarly journals MODELING AND SIMULATION OF THE NANOFLUID TRANSPORT VIA ELASTIC SHEETS

2018 ◽  
Vol 30 (05) ◽  
pp. 1850033 ◽  
Author(s):  
Jashim Uddin ◽  
Ayesha Sohail ◽  
O. A. Beg ◽  
M. D. Ismail

The field of nanofluidics research has spanned over the past decade with a variety of promising applications. We investigate the “laminar boundary layer flow” of a Newtonian nanofluid past a moving extendable/contractable horizontal plate with surface velocity and thermal slip effects. The passively controlled nanofluid model (PCM) is considered. Such models are physically more realistic as compared to the “actively controlled models” (ACM). Using Lie symmetry group method, the governing equations are reduced by a set of highly coupled nonlinear ODE’s with thermo-solutal coupled boundary conditions. The reduced equations are solved numerically by a generalized collocation method. The influences of the emerging parameters on the local skin friction factor and the local Nusselt number are depicted numerically. The skin friction is decreased as the thermophoresis and buoyancy ratio parameters are decreased. The heat transfer rates reduce with thermophoresis and buoyancy ratio parameters. Velocity slip also leads to a rise in wall temperature gradient. This study is relevant to near-wall flows in nanofluid fuel cells, nano-materials processing, etc.

Author(s):  
Nur Amalina Abdul Latiff ◽  
Md Jashim Uddin ◽  
O Anwar Bég ◽  
Ahmad Izani Ismail

The unsteady forced bioconvection boundary layer flow of a viscous incompressible micropolar nanofluid containing microorganisms over a stretching/shrinking sheet is studied numerically. A mathematical model, with the aid of appropriate transformations, is presented. The transformed non-linear ordinary differential equations are solved numerically by the Runge–Kutta–Fehlberg fourth- to fifth-order numerical method. The effect of the governing parameters on the dimensionless velocity, micro-rotation, temperature, nanoparticle volume fraction and microorganism as well as the local skin friction coefficient, the heat transfer rate and microorganisms transfer rate is thoroughly examined. The findings show that the value of skin friction and Nusselt number are decreased and microorganism number is increased as velocity slip, thermal slip and microorganism slip parameter are increased, respectively. Results from this investigation were compared with previous investigations demonstrating very good correlation. The present results are relevant to improving the performance of microbial fuel cells deploying nanofluids.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
M. J. Uddin ◽  
W. A. Khan ◽  
A. I. Md. Ismail ◽  
O. Anwar Bég

The effects of anisotropic slip and thermal jump on the three-dimensional stagnation point flow of nanofluid containing microorganisms from a moving surface have been investigated numerically. Anisotropic slip takes place on geometrically striated surfaces and superhydrophobic strips. Zero mass flux of nanoparticles at the surface is applied to achieve practically applicable results. Using appropriate similarity transformations, the transport equations are reduced to a system of nonlinear ordinary differential equations with coupled boundary conditions. Numerical solutions are reported by means of very efficient numerical method provided by the symbolic code Maple. The influences of the emerging parameters on the dimensionless velocity, temperature, nanoparticle volumetric fraction, density of motile microorganism profiles, as well as the local skin friction coefficient, the local Nusselt number, and the local density of the motile microorganisms are displayed graphically and illustrated in detail. The computations demonstrate that the skin friction along the x-axis is enhanced with the velocity slip parameter along the y-axis. The converse response is observed for the dimensionless skin friction along the y-axis. The heat transfer rate is increased with greater velocity slip effects but depressed with the thermal slip parameter. The local Nusselt number is increased with Prandtl number and decreased with the thermophoresis parameter. The local density for motile microorganisms is enhanced with velocity slip parameters and depressed with the bioconvection Lewis number, thermophoresis, and Péclet number. Numerical results are validated where possible with published results and excellent correlation is achieved.


2021 ◽  
Author(s):  
I. Ketut Aria Pria Utama ◽  
I. Ketut Suastika ◽  
Muhammad Luqman Hakim

Surface roughness can reduce the performance of a system of fluid mechanics due to an increase in frictional resistance. The ship hull, which is overgrown by biofouling, experiences a drag penalty which causes energy wastage and increased emission levels. The phenomenon of fluid flow that passes over a rough surface still has many questions, one of which is the phenomenon of frictional resistance on heterogeneous roughness in the streamwise direction. In the ship hull, biofouling generally grows heterogeneous along the hull with many factors. RANSE-based Computational Fluid Dynamics was used to investigate the friction resistance for heterogeneous roughness phenomenon. The modified wall-function method represented equivalent sand grain roughness (ks) and a roughness function were applied together with k-epsilon turbulence model to simulate rough wall turbulent boundary layer flow. As the heterogeneous roughness, three different ks values were denoted as P (ks = 81.25 μm), Q (ks = 325.00 μm) and R (ks = 568.75 μm), and they are arranged by all possible combinations. The combined roughness, whether homogeneous (PPP, QQQ, or RRR) and inhomogeneous (PQR, PRQ, QPR, etc.), results in unique skin friction values. The step-change in the height of the heterogeneous roughness produced a sudden change in the local skin friction coefficient in the form of overshoot or undershoot, followed by a relaxation where the inhomogeneous local skin friction is slowly returning to the homogeneous local one, which was explained in more detail by plotting the distribution of the mean velocity profile near the step-up or step-down. The order of roughness arrangement in a streamwise heterogenous roughness pattern plays a key role in generating overall skin friction with values increasing in the following order: PQR < PRQ < QPR < QRP < RPQ < RQP. Those inhomogeneous cases with three different values of ks can be represented by a single value (being like homogeneous) by the calculations provided in this paper.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Kaustav Pradhan ◽  
Subho Samanta ◽  
Abhijit Guha

The natural convective boundary layer flow of a nanofluid over an isothermal horizontal plate is studied analytically. The model used for the nanofluid accounts for the effects of Brownian motion and thermophoresis. The analysis shows that the velocity, temperature, and nanoparticle volume fraction profiles in the respective boundary layers depend not only on the Prandtl number (Pr) and Lewis number (Le) but also on three additional dimensionless parameters: the Brownian motion parameter Nb, the buoyancy ratio parameter Nr and the thermophoresis parameter Nt. The velocity, temperature, and nanoparticle volume fraction profiles for the nanofluid are found to have a weak dependence on the values of Nb, Nr, and Nt. The effect of the above-mentioned parameters on the local skin-friction coefficient and Nusselt number has been studied extensively. It has been observed that as Nr increases, the local skin-friction coefficient decreases whereas local Nusselt number remains almost constant. As Nb or Nt increases, the local skin-friction coefficient increases whereas the local Nusselt number decreases.


Author(s):  
Hanumesh Vaidya ◽  
K.V. Prasad ◽  
K. Vajravelu ◽  
Chiu-On Ng ◽  
S. Nadeem ◽  
...  

The study of two-dimensional flow and heat transfer in a liquid film of MHD Upper Convective Maxwell (UCM) fluid over an unsteady elastic stretching sheet subject to velocity slip and convective boundary condition is presented. Thermocapillarity effects are considered. Using suitable similarity transformations, the momentum and thermal energy equations are converted to a set of coupled nonlinear ordinary differential equations. These equations are solved numerically using the Keller-Box method. The velocity and the temperature distributions are presented graphically for different values of the pertinent parameters. The effects of the unsteady parameter on the skin friction, the wall temperature gradient, and the film thickness are tabulated and analyzed. The thermocapillarity parameter has a decreasing effect on the temperature field and the local skin-friction coefficient.


2020 ◽  
Vol 9 (1) ◽  
pp. 223-232 ◽  
Author(s):  
B.J. Gireesha ◽  
S. Sindhu

AbstractThis study has been conducted to focus on natural convection flow of Casson fluid through an annular microchannel formed by two cylinders in the presence of magnetic field. The process of heat generation/absorption is taken into consideration. Combined effects of various parameters such as porous medium, velocity slip and temperature jump are considered. Solution of the present mathematical model is obtained numerically using fourth-fifth order Runge-Kutta-Fehlberg method. The flow velocity, thermal field, skin friction and Nusselt number are scrutinized with respect to the involved parameters of interest such as fluid wall interaction parameter, rarefaction parameter, Casson parameter and Darcy number with the aid of graphs. It is established that higher values of Casson parameter increases the skin friction coefficient. Further it is obtained that rate of heat transfer diminishes as fluid wall interaction parameter increases.


2016 ◽  
Vol 20 (5) ◽  
pp. 1585-1596 ◽  
Author(s):  
Jamalabadia Abdollahzadeh ◽  
Hyun Park ◽  
Chang Lee

This study presents the effect of thermal radiation on the steady flow in a vertical micro channel filled with highly absorbing medium. The governing equations (mass, momentum and energy equation with Rosseland approximation and slip boundary condition) are solved analytically. The effects of thermal radiation parameter, the temperature parameter, Reynolds number, Grashof number, velocity slip length, and temperature jump on the velocity and temperature profiles, Nusselt number, and skin friction coefficient are investigated. Results show that the skin friction and the Nusselt number are increased with increase in Grashof number, velocity slip, and pressure gradient while temperature jump and Reynolds number have an adverse effect on them. Furthermore, a criterion for the flow unsteadiness based on the temperature parameter, thermal radiation parameter, and the temperature jump is presented.


2010 ◽  
Vol 5 (3) ◽  
pp. 38-46
Author(s):  
Vladimir I. Kornilov ◽  
Andrey V. Boiko

The effect of air microblowing through a porous wall on the properties of a turbulent boundary layer formed on a flat plate in an incompressible flow is studied experimentally. The Reynolds number based on the momentum thickness of the boundary layer in front of the porous insert is 3 900. The mass flow rate of the blowing air per unit area was varied within Q = 0−0.0488 кg/s/m2 . A consistent decrease in local skin friction, reaching up to 45−47 %, is observed to occur at the maximal blowing air mass flow rate studied.


2017 ◽  
Vol 27 (10) ◽  
pp. 2259-2267 ◽  
Author(s):  
Mustafa Turkyilmazoglu

Purpose This paper aims to working out exact solutions for the boundary layer flow of some nanofluids over porous stretching/shrinking surfaces with different configurations. To serve to this aim, five types of nanoparticles together with the water as base fluid are under consideration, namely, Ag, Cu, CuO, Al2O3 and TiO2. Design/methodology/approach The physical flow is affected by the presence of velocity slip as well as temperature jump conditions. Findings The knowledge on the influences of nanoparticle volume fraction on the practically significant parameters, such as the skin friction and the rate of heat transfer, for the above considered nanofluids, is easy to gain from the extracted explicit formulas. Originality/value Particularly, formulas clearly point that the heat transfer rate is not only dependent on the thermal conductivity of the material but it also highly relies on the heat capacitance as well as the density of the nanofluid under consideration.


Sign in / Sign up

Export Citation Format

Share Document