Requirements Refinement and Component Reuse

Author(s):  
Laura Baracchi ◽  
Alessandro Cimatti ◽  
Gerald Garcia ◽  
Silvia Mazzini ◽  
Stefano Puri ◽  
...  

The development of complex computer-based systems poses two fundamental challenges. On one side, the architectural decomposition must be complemented by a suitable refinement of the requirements. On the other side, it is fundamental to provide the means for component reuse in order to limit development costs. In this chapter, the authors discuss the approach taken in FoReVeR, a project funded by the European Space Agency (ESA), where these two issues are tackled in the setting of space systems. The approach taken in FoReVeR is based on the idea of contracts, which allow one to formally specify the requirements of components at different levels of abstraction and to formally prove the correctness of requirements decomposition. In particular, the authors show how system-level requirements can be progressively refined into software requirements and how the contract-based framework supports the reuse of the components of a reference architecture under development by ESA. The authors discuss how the proposed solution has been integrated in a space development process and present the results of case studies.

Author(s):  
Laura Baracchi ◽  
Alessandro Cimatti ◽  
Gerald Garcia ◽  
Silvia Mazzini ◽  
Stefano Puri ◽  
...  

The development of complex computer-based systems poses two fundamental challenges. On one side, the architectural decomposition must be complemented by a suitable refinement of the requirements. On the other side, it is fundamental to provide the means for component reuse in order to limit development costs. In this chapter, the authors discuss the approach taken in FoReVeR, a project funded by the European Space Agency (ESA), where these two issues are tackled in the setting of space systems. The approach taken in FoReVeR is based on the idea of contracts, which allow one to formally specify the requirements of components at different levels of abstraction and to formally prove the correctness of requirements decomposition. In particular, the authors show how system-level requirements can be progressively refined into software requirements and how the contract-based framework supports the reuse of the components of a reference architecture under development by ESA. The authors discuss how the proposed solution has been integrated in a space development process and present the results of case studies.


Author(s):  
LIUDONG XING

In this paper we consider the problem of reliability modeling and analysis of hierarchical computer-based systems (HS) with modular imperfect coverage (MIPC) and common-cause failures (CCF). The MIPC and CCF can cause vertical dependence that runs through different levels of the system as well as horizontal dependence that runs across components or modules on the same system level. The consideration of these dependencies poses unique challenges to existing HS reliability analysis methods. We propose an efficient decomposition and aggregation approach named EDA-HS to the reliability evaluation of complex hierarchical systems with both MIPC and CCF as one way to meet the above challenges in an efficient and elegant manner. Our approach is to decouple the effects of both MIPC and CCF from the combinatorics of the solution. The approach is represented in a dynamic fault tree by a proposed probabilistic functional dependency gate and a proposed CCF gate modeled after the existing FDEP gate. We present the basics and advantages of the EDA-HS approach by working through an analysis of an example HS subject to MIPC and CCF.


Author(s):  
Mark Campanelli ◽  
Jonatan Berglund ◽  
Sudarsan Rachuri

Sustainable manufacturing (SM) concerns the manufacture of products with regard to environmental, social, and economic impacts over the entire life cycle. With a primary focus on environmental concerns, life cycle assessment (LCA) can support SM practices. The life cycle inventory (LCI) is a key phase of LCA, and this paper considers the integration of manufacturing unit processes (MUPs) into system-level LCIs, which requires consideration of process flow diagrams at different levels of abstraction. Furthermore, uncertainty quantification is an important component of LCA interpretation, and this paper proposes a method to synthesize LCIs from the process-level to the system-level that consistently quantifies uncertainty in the inventories. The method can incorporate MUP data derived from measurements and/or modeling and simulation. Further development towards a complete methodology is discussed.


Author(s):  
Hananeh Aliee ◽  
Michael Glaß ◽  
Faramarz Khosravi ◽  
Jürgen Teich

AbstractContinuous technology scaling has increased the susceptibility of today’s electronic devices to manufacturing tolerances and environmental changes. The resulting uncertainty in component reliability can be only approximated or estimated at design time and might propagate to system level. Therefore, uncertainty must be considered to enable the design of robust systems. In this chapter, we propose a methodology for cross-level reliability analysis to tame the ever increasing analysis complexity of contemporary systems under the influence of uncertainties. The presented methodology combines various reliability analysis techniques across different levels of abstraction while providing an explicit modeling of uncertainties. It introduces mechanisms for (a) the composition and decomposition of the system during analysis and (b) converting analysis data between different levels of abstraction through adapters. The developed analysis techniques are integrated in an automatic electronic system-level reliability analysis tool to allow for the evaluation of reliability-increasing techniques and for DSE!. The tool thereby uses meta-heuristic algorithms for optimization and enables the comparison of system implementation candidates with objectives represented by uncertainty distributions.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 61
Author(s):  
Dominik Eisenhut ◽  
Nicolas Moebs ◽  
Evert Windels ◽  
Dominique Bergmann ◽  
Ingmar Geiß ◽  
...  

Recently, the new Green Deal policy initiative was presented by the European Union. The EU aims to achieve a sustainable future and be the first climate-neutral continent by 2050. It targets all of the continent’s industries, meaning aviation must contribute to these changes as well. By employing a systems engineering approach, this high-level task can be split into different levels to get from the vision to the relevant system or product itself. Part of this iterative process involves the aircraft requirements, which make the goals more achievable on the system level and allow validation of whether the designed systems fulfill these requirements. Within this work, the top-level aircraft requirements (TLARs) for a hybrid-electric regional aircraft for up to 50 passengers are presented. Apart from performance requirements, other requirements, like environmental ones, are also included. To check whether these requirements are fulfilled, different reference missions were defined which challenge various extremes within the requirements. Furthermore, figures of merit are established, providing a way of validating and comparing different aircraft designs. The modular structure of these aircraft designs ensures the possibility of evaluating different architectures and adapting these figures if necessary. Moreover, different criteria can be accounted for, or their calculation methods or weighting can be changed.


Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


1993 ◽  
Vol 137 ◽  
pp. 812-819
Author(s):  
T. Appourchaux ◽  
D. Gough ◽  
P. Hyoyng ◽  
C. Catala ◽  
S. Frandsen ◽  
...  

PRISMA (Probing Rotation and Interior of Stars: Microvariability and Activity) is a new space mission of the European Space Agency. PRISMA is currently in a Phase A study with 3 other competitors. PRISMA is the only ESA-only mission amongst those four and only one mission will be selected in Spring 1993 to become a real space mission.The goal of the Phase A study is to determine whether the payload of PRISMA can be accommodated on a second unit of the X-ray Multi-Mirror (XMM) bus; and whether the budget of the PRISMA mission can be kept below 265 MAU (’88 Economic conditions). The XMM mission is an approved cornerstone and is in a Phase A together with PRISMA.


2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Valeria Mangano ◽  
Melinda Dósa ◽  
Markus Fränz ◽  
Anna Milillo ◽  
Joana S. Oliveira ◽  
...  

AbstractThe dual spacecraft mission BepiColombo is the first joint mission between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) to explore the planet Mercury. BepiColombo was launched from Kourou (French Guiana) on October 20th, 2018, in its packed configuration including two spacecraft, a transfer module, and a sunshield. BepiColombo cruise trajectory is a long journey into the inner heliosphere, and it includes one flyby of the Earth (in April 2020), two of Venus (in October 2020 and August 2021), and six of Mercury (starting from 2021), before orbit insertion in December 2025. A big part of the mission instruments will be fully operational during the mission cruise phase, allowing unprecedented investigation of the different environments that will encounter during the 7-years long cruise. The present paper reviews all the planetary flybys and some interesting cruise configurations. Additional scientific research that will emerge in the coming years is also discussed, including the instruments that can contribute.


Sign in / Sign up

Export Citation Format

Share Document