Fundamentals of the Biological Processes for Nitrogen Removal

Author(s):  
Francisco J. Cervantes ◽  
Flor Cuervo-López ◽  
Jorge Gómez Hernández

In this chapter the fundamental aspects involved in biological treatment processes applied for the removal of nitrogen from wastewaters are described. A comprehensive review of the literature is provided including kinetic, microbiological and biochemical aspects of nitrification, denitrification and anammox, as well as key operational parameters affecting the processes. This information is relevant for designing wastewater treatment processes applied for the removal of nitrogen from wastewaters. The information is also essential for predicting and controlling the performance of these treatment processes.

Author(s):  
N. Zaletova ◽  
S. Zaletov

Биологический метод очистки сточных вод представляет собой сложный многокомпонентный процесс, ключевой составляющей которого является работа ферментной системы. Известно, что одним из важнейших ферментов, обеспечивающих биологический процесс, являются дегидрогеназы. Полностью сложнейший механизм действия ферментов до конца пока не раскрыт, однако в практике контроля процессов биологической очистки используется показатель дегидрогеназной активности ила. Результаты исследований позволили дополнить имеющуюся информацию фактическими данными о взаимообусловленности уровня дегидрогеназной активности ила и показателей отдельных технологических параметров биологической очистки. Показано, что режим работы аэротенков (нагрузка на ил, доза активного ила и др.) и величина показателей исходной дегидрогеназной активности и дегидрогеназной активности этого же образца ила со слабо концентрированным раствором (ДАИН2О) связаны между собой и зависят от нагрузки на ил по органическим веществам. Полученные результаты исследования могут быть использованы для контроля биологического процесса очистки сточных вод.The biological method of wastewater treatment is a comprehensive multicomponent process the activities of the enzyme system being the key component of it. It is known that dehydrogenases have been one of the most important enzymes the ensure the biological process. The complicated mechanism of the action of enzymes has not been fully described so far however, in the practice of monitoring biological treatment processes, an indicator of the dehydrogenase activity of sludge is used. The research results provided for supplementing the available information with actual data on the interdependence of the level of dehydrogenase activity of sludge and indicators of individual process parameters of biological treatment. It was shown that the mode of operation of aeration tanks (organic matter load on sludge, dose of activated sludge, etc.) and the values of the initial dehydrogenase activity and dehydrogenase activity of the same sludge sample with weakly concentrated solution (DASН2О) are interconnected and depend on the organic load on sludge. The results of the study can be used to control the biological process of wastewater treatment.The biological method of wastewater treatment is a comprehensive multicomponent process the activities of the enzyme system being the key component of it. It is known that dehydrogenases have been one of the most important enzymes the ensure the biological process. The complicated mechanism of the action of enzymes has not been fully described so far however, in the practice of monitoring biological treatment processes, an indicator of the dehydrogenase activity of sludge is used. The research results provided for supplementing the available information with actual data on the interdependence of the level of dehydrogenase activity of sludge and indicators of individual process parameters of biological treatment. It was shown that the mode of operation of aeration tanks (organic matter load on sludge, dose of activated sludge, etc.) and the values of the initial dehydrogenase activity and dehydrogenase activity of the same sludge sample with weakly concentrated solution (DASН2О) are interconnected and depend on the organic load on sludge. The results of the study can be used to control the biological process of wastewater treatment.


2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.


1986 ◽  
Vol 18 (6) ◽  
pp. 35-45 ◽  
Author(s):  
John C. Kissel

Parameters characterizing intrasolid, liquid/solid, and gas/liquid mass transport phenomena in biological treatment systems are required if mass transfer is to be included in process models. Estimates of such parameters are presented and discussed. Collective and individual effects of mass transfer resistances are illustrated by computer simulation of a high-rate trickling filter.


2021 ◽  
Vol 3 (2) ◽  
pp. 130-140
Author(s):  
Maria Diana Puiu ◽  

The food industry wastewater is known to present a high organic matter content, due to specific raw materials and processing activities. Even if these compounds are not directly toxic to the environment, high concentrations in effluents could represent a source of pollution as discharges of high biological oxygen demand may impact receiving river's ecosystems. Identifying the main organic contaminants in wastewater samples represents the first step in establishing the optimum treatment method. The sample analysis for the non-target compounds through the GC-MS technique highlights, along with other analytical parameters, the efficiency of the main physical and biological treatment steps of the middle-size Wastewater Treatment Plant (WWTP). Long-chain fatty acids and their esters were the main abundant classes of non-target identified compounds. The highest intensity detection signal was reached by n-hexadecanoic acid or palmitic acid, a component of palm oil, after the physical treatment processes with dissolved air flotation, and by 1-octadecanol after biological treatment.


2014 ◽  
Vol 69 (8) ◽  
pp. 1720-1727 ◽  
Author(s):  
E. N. P. Courtens ◽  
F. Meerburg ◽  
V. Mausen ◽  
S. E. Vlaeminck

Water is not enough. Nowadays, numerous chemicals are used for fire extinction. After use, however, these may unintentionally enter sewerage systems. In order to safely treat firefighting wastewater (FFWW), knowledge of the potential effects of these chemicals on biological treatment processes is essential. This study characterized and mimicked the composition of FFWW containing two powders, three foams and one foam degrader. Nitrogen (162–370 mg NH4+-N L−1) and phosphorus (173–320 mg PO43−-P L−1) concentrations exceeded discharge limits, whereas chemical and biological oxygen demand, suspended solids and detergent concentrations remained sufficiently low. Adequate nutrient removal could be obtained through FeCl3 addition and nitrification/denitrification with acetate as substrate. In batch tests, residual nitrifying activities of 84, 81, 89, 95 and 93% were observed in the presence of powders, foams, foam degrader, synthetic and real FFWW, respectively. All categories showed higher denitrification rates than the control. Although the powders at first seemed to inhibit anammox activity at 82%, after pH correction anammox was fully feasible, allowing nitrogen removal through oxygen-limited nitrification/denitrification (OLAND). Detailed cost calculations indicated that OLAND could save 11% of capital and 68% of operational costs compared to nitrification/denitrification, identifying OLAND as the most recommendable process for nitrogen removal from firefighting wastewaters.


Author(s):  
Junwon Park ◽  
Changsoo Kim ◽  
Youngmin Hong ◽  
Wonseok Lee ◽  
Hyenmi Chung ◽  
...  

In this study, we analyzed 27 pharmaceuticals in liquid and solid phase samples collected from the unit processes of four different sewage treatment plants (STPs) to evaluate their distribution and behavior of the pharmaceuticals. The examination of the relative distributions of various categories of pharmaceuticals in the influent showed that non-steroidal anti-inflammatory drugs (NSAIDs) were the most dominant. While the relative distribution of antibiotics in the influent was not high (i.e., 3%–5%), it increased to 14%–30% in the effluent. In the four STPs, the mass load of the target pharmaceuticals was reduced by 88%–95% mainly in the biological treatment process, whereas the ratio of pharmaceuticals in waste sludge to those in the influent (w/w) was only 2%. In all the STPs, the removal efficiencies for the stimulant caffeine, NSAIDs (acetaminophen, naproxen, and acetylsalicylic acid), and the antibiotic cefradine were high; they were removed mainly by biological processes. Certain compounds, such as the NSAID ketoprofen, contrast agent iopromide, lipid regulator gemfibrozil, and antibiotic sulfamethoxazole, showed varying removal efficiencies depending on the contribution of biodegradation and sludge sorption. In addition, a quantitative meta-analysis was performed to compare the pharmaceutical removal efficiencies of the biological treatment processes in the four STPs, which were a membrane bioreactor (MBR) process, sequencing batch reactor (SBR) process, anaerobic–anoxic–oxic (A2O) process, and moving-bed biofilm reactor (MBBR) process. Among the biological processes, the removal efficiency was in the order of MBR > SBR > A2O > MBBR. Among the tertiary treatment processes investigated, powdered activated carbon showed the highest removal efficiency of 18%–63% for gemfibrozil, ibuprofen, ketoprofen, atenolol, cimetidine, and trimethoprim.


2012 ◽  
Vol 19 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Elżbieta Hallmann ◽  
Renata Tomczak-Wandzel ◽  
Krystyna Mędrzycka

Combined Chemical-Biological Treatment of Effluents from Soil Remediation Processes by Surfactants Solutions Flushing In recent years combined chemical-biological wastewater treatment processes have received increasing interest. In the present study wastewater from soil remediation processes were treated by means of 1-step processes like Fenton, aerobic degradation and 2-steps combined method. The effluents resulting from soil remediation processes consist of high surfactant concentration solutions, mobilized oils and oil-in-water (o/w) emulsions. The effectiveness of wastewater treatment was evaluated by COD reduction and surfactant removal. The application of Fenton process alone showed around 80% of COD and surfactant removal, and in case of aerobic process only 60% of COD and 50% of surfactant removal was accomplished. However, the maximum COD reduction and surfactant removal from wastewater samples, above 90%, was obtained in aerobic degradation with Fenton process as pretreatment. Thus, the Fenton process could be effectively applied as a pretreatment step to improve the reduction of both COD and surfactant from wastewater resulting from soil remediation.


2009 ◽  
Vol 59 (4) ◽  
pp. 771-777 ◽  
Author(s):  
Anfeng Yu ◽  
PengYu Huang ◽  
Dawei Gui ◽  
Haisheng Wang ◽  
Quan Feng ◽  
...  

This paper aimed at developing the enhanced biological treatment processes for treating avermectin fermentation wastewater (AFW). After UASB treatment and chemical coagulation, the pretreated AFW was subsequently flowed into a rCAA reactor (reactor with repeated coupling of aerobes and anaerobes using macroporous carriers) system for further pollutant degradation and excess sludge reduction. By the treatment with chemical coagulation, COD, total nitrogen and total phosphorus concentration of treated AFW were eliminated to 550–700 mg/L, 130–160 mg/L and 1 mg/L, respectively, and the dark color of the wastewater was greatly bleached. After this decolorized wastewater was treated by the following rCAA bioreactor, the COD could be reduced to around 200–300 mg/L, while the further decrease of COD less than 200 mg/L was difficult. The Biolog analysis and OUR test for the water treated by rCAA bioreactor demonstrated that the effluent from chemical coagulation contained some unknown compounds with low biodegradability and would simplify the microbial community in the subsequent rCAA reactor.


Sign in / Sign up

Export Citation Format

Share Document