Development and Modification of Natural Rubber for Advanced Application

Author(s):  
Kanoktip Boonkerd

Although natural rubber is a challenging elastomeric material for both dynamic and static engineering applications, there are some inherent drawbacks such as the poor oxygen, ozone, oil and heat resistance and also the low compatibility with the polar materials. To loosen these inferior properties and also to transform natural rubber into new polymeric materials, natural rubber needs to be either chemically or physically modified. Moreover, to make natural rubber become a promising elastomeric material for the advanced application, the development of natural rubber with the superior mechanical strength, the low gas permeability or the high conductivity is recently focused. And these can be done by reinforcing natural rubber with nanofillers. This chapter presents a broad review on the recent research and development of natural rubber including the modification of natural rubber and the preparation of various natural rubber nanocomposites for advanced application.

Author(s):  
Karthik Babu ◽  
Oisik Das ◽  
Vigneshwaran Shanmugam ◽  
Rhoda Afriye Mensah ◽  
Michael Försth ◽  
...  

Abstract3D printing or additive manufacturing (AM) is considered as a flexible manufacturing method with the potential for substantial innovations in fabricating geometrically complicated structured polymers, metals, and ceramics parts. Among them, polymeric composites show versatility for applications in various fields, such as constructions, microelectronics and biomedical. However, the poor resistance of these materials against fire must be considered due to their direct relation to human life conservation and safety. In this article, the recent advances in the fire behavior of 3D-printed polymeric composites are reviewed. The article describes the recently developed methods for improving the flame retardancy of 3D-printed polymeric composites. Consequently, the improvements in the fire behavior of 3D-printed polymeric materials through the change in formulation of the composites are discussed. The article is novel in the sense that it is one of the first studies to provide an overview regarding the flammability characteristics of 3D-printed polymeric materials, which will further incite research interests to render AM-based materials fire-resistant.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1098
Author(s):  
Jibin Keloth Paduvilan ◽  
Prajitha Velayudhan ◽  
Ashin Amanulla ◽  
Hanna Joseph Maria ◽  
Allisson Saiter-Fourcin ◽  
...  

Nanomaterials have engaged response from the scientific world in recent decades due to their exceptional physical and chemical properties counter to their bulk. They have been widely used in a polymer matrix to improve mechanical, thermal, barrier, electronic and chemical properties. In rubber nanocomposites, nanofillers dispersion and the interfacial adhesion between polymer and fillers influences the composites factual properties. In the present work, a comparison of the hybrid effects of carbon black with two different nanofillers (graphene oxide and nanoclay) was studied. The 70/30 composition of chlorobutyl rubber/natural rubber elastomer blend was taken as per the blend composition optimized from our previous studies. The hybrid effects of graphene oxide and nanoclay in dispersing the nanofillers were studied mainly by analyzing nanocomposite barrier properties. The results confirm that the combined effect of carbon black with graphene oxide and nanoclay could create hybrid effects in decreasing the gas permeability. The prepared nanocomposites which partially replace the expensive chlorobutyl rubber can be used for tyre inner liner application. Additionally, the reduction in the amount of carbon black in the nanocomposite can be an added advantage of considering the environmental and economic factors.


2017 ◽  
Vol 44 (12) ◽  
pp. 19-22
Author(s):  
A.S. Shabaev ◽  
S.Yu. Khashirova ◽  
A.K. Mikitaev ◽  
I.V. Musov ◽  
A.L. Slonov

The diffusion cell to a Tsvet-800 chromatograph for determining the gas permeability of polymeric materials has been optimised. The oxygen permeability and the carbon dioxide permeability of polymer composites based on polyethylene terephthalate and polybutylene terephthalate have been studied. The optimum compositions, combining high barrier properties and a low acetaldehyde content, have been found.


2018 ◽  
Vol 136 (13) ◽  
pp. 47281 ◽  
Author(s):  
Apinya Krainoi ◽  
Claudia Kummerlöwe ◽  
Norbert Vennemann ◽  
Yeampon Nakaramontri ◽  
Skulrat Pichaiyut ◽  
...  

2018 ◽  
Vol 936 ◽  
pp. 31-36 ◽  
Author(s):  
Wichudaporn Seangyen ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
Peerapan Dittanet

Silica nanoparticles were synthesized by rice husk ash (RHA) produced from jasmine rice husk and riceberry rice husk via sol-gel method for the use as reinforcing fillers in natural rubber (NR). The obtained silica nanoparticles are spherical in shape and the particle sizes were observed to be in the 10-20 nm range with uniformly size distribution. The surface of silica nanoparticles was treated with a silane coupling agent confirmed by FTIR. The treated silica nanoparticles were then incorporated into NR and vulcanized with electron beam irradiation. The rubber nanocomposites with silica nanoparticles, produced from jasmine rice husk and riceberry rice husk, resulted in higher mechanical properties (tensile strength and modulus) than neat rubber vulcanizate. The modified rubber vulcanizates revealed rougher surface with tear lines as compared to the neat rubber vulcanizates, indicating the improved strength. Interestingly, the rubber nanocomposites with silica nanoparticles from jasmine rice husk showed higher tensile strength and modulus than silica nanoparticles produced from riceberry rice husk. The micrographs indicated better dispersion of NR composites with jasmine rice husk which leads to a strong interaction between silica nanoparticles and rubber matrix, thereby improving the strength.


2018 ◽  
Vol 13 (3) ◽  
pp. 90-95
Author(s):  
Роман Ли ◽  
Roman Li ◽  
Дмитрий Псарев ◽  
Dmitriy Psarev ◽  
Мария Киба ◽  
...  

Body parts are typical, most material-intensive and expensive parts. When repairing worn out hull details, the costs for repairing equipment are significantly reduced, in comparison with the manufacture of new ones, the consumption of metal, electricity, and environmental pollution is reduced. Unlike many other methods, the methods of restoring body parts with polymeric materials are technologically simple, do not require large energy inputs and high qualification of the personnel. Due to the polymer layer, the stresses in the contact zone of loaded bodies with the bearing raceways decrease and its durability increases, there is no fretting corrosion and the service life of the bearing and body part increases manyfold. The use of polymeric composites can significantly improve the efficiency of restoring body parts. This is due to increased thermal conductivity, thermal and heat resistance, lower cost of composites in comparison with non-filled polymers. A promising direction in improving the consumer properties of the material is the filling of the polymer matrix with nanoscale particles. The nanocomposite based on elastomer F-40 filled with aluminum and copper nanoparticles has been developed and thoroughly studied at the LSTU. The material is designed to restore the landing holes in the hull parts of the tractor equipment. The article presents the results of experimental studies and analysis of deformation-strength and adhesion properties of a nanocomposite, its optimal composition is justified. Comparative results of the study of heat resistance and thermal stability of the F-40 elastomer and a nanocomposite based on are presented. It is shown that the nanocomposite has higher consumer properties than the F-40 elastomer: the strength and endurance are increased to 1.3 times, the heat resistance is up to 123C, the aging coefficients are 1.8 times higher in strength, 1.4 times in deformation.


Author(s):  
Wan Ahmad Kamil Mahmood ◽  
Mohammad Hossein Azarian

Organic-Inorganic composite materials (OICs) are used to describe the group of materials synthesized from polymers and inorganic metal alkkoxides. The interests in these materials arised from the need to ‘combine' the physical properties of inorganic glass materials and polymers such that the resultant OICs have the strength of the inorganic glass and flexibiliy of polymeric materials. Sol-gel technique have been the technique of choice due to much of its advantages, in particular the low temperature reaction. This is very important when natural rubber and its derivatives are used as the polymer component of the OICs. Work in our laboratory has demonstrated that OICs form liquid natural rubber (LNR) and 50% epoxidised natural rubber (ENR-50) can be prepared from various metal alkoxides, such silicon, zirconium and titanium. The OICs can be prepared as flexible transparent films, nanofibers and nanobeads. This Chapter will describe the preparation techniques and the properties of these OICs from various compositions of one and more metal alkoxides in both LNR and ENR-50. The applications of these materials in PANI will be briefly described.


Sign in / Sign up

Export Citation Format

Share Document