Natural Rubber Reinforced with Silica Nanoparticles Extracted from Jasmine and Riceberry Rice Husk Ashes

2018 ◽  
Vol 936 ◽  
pp. 31-36 ◽  
Author(s):  
Wichudaporn Seangyen ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
Peerapan Dittanet

Silica nanoparticles were synthesized by rice husk ash (RHA) produced from jasmine rice husk and riceberry rice husk via sol-gel method for the use as reinforcing fillers in natural rubber (NR). The obtained silica nanoparticles are spherical in shape and the particle sizes were observed to be in the 10-20 nm range with uniformly size distribution. The surface of silica nanoparticles was treated with a silane coupling agent confirmed by FTIR. The treated silica nanoparticles were then incorporated into NR and vulcanized with electron beam irradiation. The rubber nanocomposites with silica nanoparticles, produced from jasmine rice husk and riceberry rice husk, resulted in higher mechanical properties (tensile strength and modulus) than neat rubber vulcanizate. The modified rubber vulcanizates revealed rougher surface with tear lines as compared to the neat rubber vulcanizates, indicating the improved strength. Interestingly, the rubber nanocomposites with silica nanoparticles from jasmine rice husk showed higher tensile strength and modulus than silica nanoparticles produced from riceberry rice husk. The micrographs indicated better dispersion of NR composites with jasmine rice husk which leads to a strong interaction between silica nanoparticles and rubber matrix, thereby improving the strength.

2019 ◽  
Vol 821 ◽  
pp. 74-80
Author(s):  
Wichudaporn Seangyen ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
Peerapan Dittanet

In-situ silica nanoparticles with ammonium laurate surfactant in natural rubber latex composites were characterized to describe the reinforcement mechanism in enhanced mechanical properties. In-situ sol-gel method was introduced to generate silica nanoparticles in natural rubber latex using a mole ratio of water-to-TEOS of 28.9 stirring at room temperature for 24 hours. The addition and effect of adding ammonium laurate surfactant for enhancing dispersion and compatibility between silica nanoparticles and rubber matrix was also studied. The natural rubber latex was then vulcanized by electron beam radiation at 200 kGy. The silica content in rubber composites made in-situ, was analyzed by TGA, showed an increase from 3.08 phr to 8.92 phr, corresponding to addition of TEOS amounts of 10 phr to 30 phr, respectively. The dispersion of silica nanoparticles in rubber matrix with ammonium laurate surfactant was improved and exhibited less aggregation than rubber composites absent of ammonium laurate surfactant as evidenced by SEM-EDX. The increase of silica content in rubber composites exhibited lower swelling ratio and higher crosslink density when compared with neat natural rubber. Also, the modulus at 100% and 300% strain also increased with increasing silica nanoparticles incorporation in contrast to tensile strength.


2010 ◽  
Vol 150-151 ◽  
pp. 762-765
Author(s):  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Shao Guo Wen ◽  
Yan Shen

Attapulgite (AT)/natural rubber (NR)/ styrene-butadiene rubber (SBR) nanocomposites have been prepared after attapulgite was modified by different coupling agent. The treatment of AT caused the adhesion between AT nanorods and the nature rubber/styrene-butadiene rubber was improved, which enhanced the tensile properties of the matrix. The tensile strength of composites attained 15.6 MPa after AT was modified by 3%wt Si-69 coupling with addition of 20 phr.


2008 ◽  
Vol 16 (8) ◽  
pp. 527-533 ◽  
Author(s):  
Sheng Liu ◽  
Hui Zhang ◽  
Zhong Zhang ◽  
Taihua Zhang ◽  
Stephan Sprenger

Flexible organic elastomeric nanoparticles (ENP) and two kinds of rigid inorganic silica nanoparticles were dispersed respectively into a bisphenol-A epoxy resin in order to tailor and compare the performance of mechanical properties. It was found that the well-dispersed flexible ENP greatly enhanced the toughness of the epoxy with the cost of modulus and strength. Comparatively, the rigid silica nanoparticles improved Young's modulus, tensile strength and fracture toughness simultaneously. Both fumed and sol-gel-formed nanosilica particles conducted similar results in reinforcing the epoxy resin, although the latter exhibited almost perfect nanoparticle dispersion in matrix. The toughening mechanisms of nanocomposites were further discussed based on fractographic analysis.


2019 ◽  
Vol 36 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Ajaman Adair ◽  
Azizon Kaesaman ◽  
Pairote Klinpituksa

Epoxidized natural rubber (ENR) and a superabsorbent polymer composite (SAPC) along with other minor components were mechanically blended in an internal mixer (Brabender Plasticorder) at 40°C and 60 r/min rotor speed with 80% fill factor. The SAPC was synthesized by grafting polyacrylamide onto hydroxyethyl cellulose backbones and adding bentonite clay. The first water-swelling behavior was investigated with alternative epoxidation levels of the ENR. Water-swellable rubber (WSR) performed well in terms of water absorbency, and weight loss was achieved with 50 mole% epoxidation level, so this ENR was chosen for the rubber matrix from which WSR was prepared with various contents of SAPC (0, 5, 10, 15, and 20 phr). The results indicated that SAPC loading positively affected water absorbency, which was resulted by increasing weight loss and loss of mechanical properties, such as tensile strength and elongation at break. However, the modulus increased with SAPC content. WSR formulated from ENR-50, SAPC, and other ingredients resulting in good water-swelling behaviors and modulus, while the tensile strength and elongation at break had opposition. SAPC was an important factor to control the overall WSR properties.


2015 ◽  
Vol 1109 ◽  
pp. 205-209 ◽  
Author(s):  
Abd Aziz Azira ◽  
D. Verasamy ◽  
N.S. Abdullah ◽  
M.M. Kamal

Epoxidized natural rubber (ENR) / silica (Si) organic-inorganic composites were prepared by using a sol-gel technique. The choice of ENR (50 mol % epoxidation level), as a matrix was made because of its polar nature which can interact with the silica. The processing of the masterbatch was carried out by sol-gel method at room temperature by dispersing the silica in the rubber and coagulated with steam bath. The performance of the composites was evaluated in this work for the viability of ENR/Si in tyre compounding. Compounding was carried out on a two roll mill, where the additives and curing agents was later mixed. Characterization of these composites was performed by Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) for dispersion as well as mechanical testing. Silica was also efficient as primary reinforcing filler in ENR with regard to modulus and tensile strength, resulting on an increase in the stiffness of the rubbers. Improvement in tensile strength over the control crosslinked rubber sample was probably due to synergisms of silica reinforcement and crosslinking of the rubber phase.


Author(s):  
Kumarjyoti Roy ◽  
Subhas Chandra Debnath ◽  
Debdipta Basu ◽  
Aphiwat Pongwisuthiruchte ◽  
Pranut Potiyaraj

ABSTRACT In recent years, the application of sol-gel science to industrial polymer research has offered advancements in rubber technology. The use of sol-gel–synthesized materials for the development of highly reinforced rubber composites is the most commonly adopted and popular method exercised by rubber scientists. This article comprehensively reviews the recent progress regarding preparation and properties of sol-gel–synthesized nanoparticles-based rubber composites. The pragmatic consequences of sol-gel–synthesized nanoparticles in rubber compounds are systematically described through rheological, mechanical, and thermal properties. Emphatic focus is given to understanding the reinforcement mechanism of rubber composites by the use of sol-gel–derived alkoxide silica as filler. The properties of rubber nanocomposites are usually dependent on the dispersion of sol-gel–synthesized nanoparticles into the rubber matrix. The results reviewed from prolific studies suggested that sol-gel science has tremendous potential to develop high performance rubber nanocomposites for future industrial application.


2021 ◽  
Vol 53 (4) ◽  
pp. 210403
Author(s):  
Kendri Wahyuningsih ◽  
Sri Yuliani ◽  
Hoerudin Hoerudin

Silica extracted from rice husk (silica nanoparticles, Si-NP RHA) has great potential for industrial use, particularly as filler in the rubber industry. However, silica is poorly dispersed in the matrix and needs to be modified by a silane linking agent (bis-(3-triethoxysilylpropyl) tetrasulfane (TESPT)) to improve its mixing properties. As a result, a large amount of used solvent containing silane TESPT is produced. This study aimed to evaluate the surface modification of silica nanoparticles from rice husk employing this used solvent and to characterize the particles’ physical properties. Silica nanoparticles were extracted from rice husk using a sol-gel method. FTIR spectography demonstrated that the TESPT on fresh solvent and the used solvent were successfully grafted onto the surface of Si-NP RHA. Si-NP RHA modified by Two Step Modification (TSM) employing used solvent had strong absorption peaks at wave numbers of 2927.94 cm-1 and 1446.61 cm-1, which are associated with vibration of the ‑CH2 group and deforming vibration of the -C-H group in TESPT compounds. Likewise, Si-NP RHA modified with One Step Modification (OSM), either using fresh solvent or the used solvent, exhibited absorption peaks at wave numbers 2935.66 cm-1 and 1404.18 cm-1. The result showed that the used solvent still effectively modified the silica nanoparticle surface. 


Author(s):  
Anyaporn Boonmahitthisud

Natural rubber (NR) is representative biomass polymer and the effective uses are strongly contributed to sustainable society. This chapter presents the innovative and advanced rubber nanocomposites with polystyrene-encapsulated silica nanohybrids (PS-nSiO2) subsequently used as a nanofiller for NR and NR/styrene butadiene rubber (NR/SBR). The PS-nSiO2 were prepared via ‘in situ' differential microemulsion polymerization. The core-shell nanohybrids of PS-nSiO2 were achieved with an average diameter of 40 nm using a smaller amount of surfactant, compared to microemulsion polymerization method. Moreover, the effects of the NR and NR/SBR filled with PS-nSiO2 nanohybrids on the mechanical properties, thermal stability, flammability and morphology are also discussed. The results indicated that the encapsulation of nSiO2 with PS can provide not only the well-dispersion of nanoparticles in the rubber matrix but also the synergistic properties of two components from the polymer and the inorganic nanoparticles by improving mechanical properties, thermal stability and flammability of rubber nanocomposites.


2012 ◽  
Vol 626 ◽  
pp. 523-529 ◽  
Author(s):  
Shamala Ramasamy ◽  
Hanafi Ismail ◽  
Yamuna Munusamy

Rice husk powder (RHP) is an abundant agricultural by product that is produced in bulk quantity as part of rice milling. This research is carried out to incorporate RHP with natural rubber latex (NRL) compound. Different loading of RHP is added to NRL compound and is foamed to make natural rubber latex foam (NRLF) using a well known technique called the Dunlop method. The tensile properties of modified NRLF is studied and compared with the controlled NRLF which has zero RHP loading. The morphology and micro structural characterization has been performed by Tabletop microscopy (TM1000). The tensile strength decreases at 2.5 pphr but increases again as the filler loading increases. Elongation at break decreases whereas modulus at 100% elongation (M 100) and hardness increases as the filler loading increases.


Sign in / Sign up

Export Citation Format

Share Document