scholarly journals Preliminary observations of plastic debris in the gastrointestinal tract of sea urchin Tetrapygus niger

2020 ◽  
Vol 3 (2) ◽  
pp. 316
Author(s):  
Gabriel Enrique De-la-Torre ◽  
Diana Carolina Dioses-Salinas ◽  
Sandra Huamantupa-Aybar ◽  
Joseph Davila-Carrasco

Plastic pollution is regarded as one of the major issues from the Anthropocene epoch. Microplastics (<5 mm) are the result of the excessive plastic production and littering, thus becoming widespread in the environment. In this study, the presence and characteristics of microplastics extracted from the gastrointestinal tract of sea urchin Tetrapygus niger was reported. An average abundance of 3.22 ± 0.49 microplastics per individual was found, ranging from 1 to 5. Fibers were the dominant type (75.9%), followed by fragments (24.1%). Regarding color, most of the particles found were blue > red > black > green. These results are in lower magnitude levels than those reported in others species from the same region. However, microplastics could transfer from sea urchins to predators in higher trophic levels, like marine mammals. Prospects for further research was discussed.

1986 ◽  
Vol 64 (9) ◽  
pp. 1920-1925 ◽  
Author(s):  
D. W. Keats ◽  
D. H. Steele ◽  
G. R. South

The diet of the Atlantic wolffish was studied by examining the contents of the gastrointestinal tracts of 90 individuals collected from the sea urchin dominated rocky subtidal in eastern Newfoundland. Green sea urchins comprised 75% of the overall diet by weight. Horse mussels ranked second but comprised only 9.5% of the diet. The remainder of the diet consisted of several species of invertebrates and fish. The average (over the whole season) wolffish contained 120 g of urchins, equivalent to the biomass of urchins on 0.23 m2 in the middle of the urchin-dominated zone. During April–September, prior to breeding, the average male wolffish contained 174 g of urchins, and the average female contained 85 g of urchins, biomass values representing, respectively, 0.33 and 0.16 m2. Assuming that the contents of the gastrointestinal tract turn over every 3 days, it was calculated that during May through August each wolffish consumes on average 5.29 kg of urchins (males, 7.09 kg; females, 3.50 kg). Based on these figures, a density of 1 wolffish pair per 20 m2 would be required to consume the mean biomass (532 g m−2) of urchins present in the urchin-dominated zone in 1 year.


2018 ◽  
Vol 4 (3) ◽  
pp. 233-241 ◽  
Author(s):  
Md Abul Hasnat ◽  
Mohammad Atikur Rahman

The consequences of plastic debris in the marine environment were reviewed, and possible solutions were presented. The extent of marine plastic debris-related problems surpasses many other marine problems, as plastics may be transported globally and no unaffected areas seem to exist. Many animal species are in risk, most commonly studied are the effects on marine mammals and seabirds. Marine plastic debris creates new concerns such as entanglement, ghost fishing, and impaction of digestive tracts in animals. It also increases the severity of already existing concerns such as transport, exposure and uptake of organic pollution, with reduced fitness and impaired reproduction and increased mortality rates as consequences. To alleviate the problems, reducing the extent of marine plastic pollution is critical. Possible methods were identified as collecting and incentivizing recycling of marine plastic debris; redirecting production from petroleum plastics to biodegradable varieties; increase public awareness to reduce marine littering; stricter enforcement of current legislation as well as implementation of stricter legislation and harsher penalties for breaking it.Asian J. Med. Biol. Res. September 2018, 4(3): 233-241


1987 ◽  
Vol 65 (6) ◽  
pp. 1515-1521 ◽  
Author(s):  
D. W. Keats ◽  
D. H. Steele ◽  
G. R. South

The diet of ocean pout was studied by analysis of the contents of the gastrointestinal tracts of 151 individuals collected from the green sea urchin dominated rocky subtidal in eastern Newfoundland. Green sea urchins constituted 62% of the overall diet by weight. The brittle star, Ophiopholus aculeata, constituted 7% of the diet, while the remainder was miscellaneous invertebrates and fish (mainly capelin and billfish). From April to July, when the fish are inshore and feeding, before breeding, the average ocean pout contained 56.3 g of urchins. This is a biomass of urchins equivalent to that in 0.106 m2 of the middle of the urchin-dominated zone. During the inshore feeding period, the average male ocean pout contained 65.0 g of urchins, and the average female contained 47.5 g, biomass values representing 0.122 and 0.089 m2, respectively. Assuming that the contents of the gastrointestinal tract turn over every 3 days, and assuming a 1:1 sex ratio, it is calculated that while inshore, before a seasonal reduction in feeding associated with the spawning season, each ocean pout consumes on average 2.29 kg of urchins (males 2.64 kg, females 1.93 kg). Based on these figures, a density of one ocean pout pair per 8.6 m2 would be required to completely consume the mean biomass (532 g m−2) of urchins present in the urchin-dominated zone in one season.


Author(s):  
Irfan Rashid Sofi ◽  
Javid Manzoor ◽  
Rayees Ahmad Bhat ◽  
Rafiya Munvar

Plastic pollution in the environment is currently receiving worldwide attention. Improper dumping of disused or abandoned plastic wastes leads to contamination of the environment. Contamination by bulk plastics and plastic debris is currently the one of the most serious problems in aquatic ecosystems. In particular, small-scale plastic debris such as microplastics and nanoplastics has become a leading contributor to the pollution of marine and freshwater ecosystems. Over 300 million tons of plastic is produced annually, and around 75% of all marine litter is plastic. Plastic litter is widespread in aquatic ecosystems and comes from a variety of sources. The abundance of plastics, combined with their small size and subsequent association with plankton in the water column, allows for direct ingestion by aquatic biota at different trophic levels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Sanchez-Vidal ◽  
Miquel Canals ◽  
William P. de Haan ◽  
Javier Romero ◽  
Marta Veny

AbstractThere is strong evidence that the seafloor constitutes a final sink for plastics from land sources. There is also evidence that part of the plastics lying on the shallow seafloor are washed up back to the shoreline. However, little is known on the natural trapping processes leading to such landwards return. Here we investigate microplastics and larger plastic debris within beached seagrass remains including balls (aegagropilae) made of natural aggregates of vegetal fibers intertwined by seawater motion. We found up to 1470 plastic items per kg of plant material, which were mainly composed of negatively buoyant polymer filaments and fibers. Our findings show that seagrass meadows promote plastic debris trapping and aggregation with natural lignocellulosic fibers, which are then ejected and escape the coastal ocean. Our results show how seagrasses, one of the key ecosystems on Earth in terms of provision of goods and services, also counteract marine plastic pollution. In view of our findings, the regression of seagrass meadows in some marine regions acquires a new dimension.


2021 ◽  
Author(s):  
Jonathan Hira ◽  
Klara Stensvåg

Abstract “Sea urchin lesion syndrome” is known as sea urchins disease with the progressive development of necrotic epidermal tissue and loss of external organs, including appendages on the outer body surface. Recently, a novel strain, Vibrio echinoideorum has been isolated from the lesions of green sea urchin (Strongylocentrotus droebachiensis), an economically important mariculture species in Norway. V. echinoideorum has not been reported elsewhere in association of with green sea urchin lesion syndrome. Therefore, in this study, an immersion based bacterial challenge experiment was performed to expose sea urchins (wounded and non-wounded) to V. echinoideorum, thereby mimicking a nearly natural host-pathogen interaction under controlled conditions. This infection experiment demonstrated that only the injured sea urchins developed the lesion to a significant degree when exposed to V. echinoideorum. Pure cultures of the employed bacterial strain was recovered from the infected animals and its identity was confirmed by the MALDI-TOF MS spectra profiling. Additionally, the hemolytic phenotype of V. echinoideorum substantiated its virulence potential towards the host, and this was also supported by the cytolytic effect on red spherule cells of sea urchins. Furthermore, the genome sequence of V. echinoideorum was assumed to encode potential virulence genes and were subjected for in silico comparison with the established virulence factors of Vibrio vulnificus and Vibrio tasmaniensis. This comparative virulence profile provided novel insights about virulence genes and their putative functions related to chemotaxis, adherence, invasion, evasion of the host immune system, and damage of host tissue and cells. Thus, it supports the pathogenicity of V. echinoideorum. In conclusion, the interaction of V. echinoideorum with injured sea urchins appears to be essential for the development of lesion syndrome and therefore, revealing its potentiality as an opportunistic pathogen.


Author(s):  
J.A. Baeza ◽  
M. Thiel

The porcellanid crab Liopetrolisthes mitra is a common associate of the black sea urchin, Tetrapygus niger in north central Chile. The host-use pattern, population dynamics and reproductive pattern of L. mitra on sea urchins were examined between January 1996 and February 1997. Each month, between 60 and 95 per cent of all collected urchins hosted crabs, with the highest frequency of cohabitation occurring during the austral summer (January to March). Group sizes of crabs on individual urchins ranged from 1 to 25 crabs per host. The average density of crabs on the urchins ranged from 2 to 5.5 crabs per host. Large urchins were inhabited by crabs more frequently than small urchins but urchin size had no effect on the number or size of crabs. The sex ratio of adult crabs was ˜1:1 during most months. Reproduction occurred throughout the year but was most intense during the austral spring and summer (October to March), when the highest percentage of ovigerous females were found. Similarly, recruitment of L. mitra occurred throughout the year but reached a peak during austral summer and early autumn (January to May). All life stages of L. mitra including recently settled megalopae and reproductive adults were found on urchins. Size–frequency analysis indicated that many crabs live >1.5 years. The results of this study confirm that the association between L. mitra and T. niger is strong and persists throughout the benthic life of the commensal crab.


Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 261
Author(s):  
Konstantin Pikula ◽  
Mariya Tretyakova ◽  
Alexander Zakharenko ◽  
Seyed Ali Johari ◽  
Sergey Ugay ◽  
...  

Vehicle emission particles (VEPs) represent a significant part of air pollution in urban areas. However, the toxicity of this category of particles in different aquatic organisms is still unexplored. This work aimed to extend the understanding of the toxicity of the vehicle exhaust particles in two species of marine diatomic microalgae, the planktonic crustacean Artemia salina, and the sea urchin Strongylocentrotus intermedius. These aquatic species were applied for the first time in the risk assessment of VEPs. Our results demonstrated that the samples obtained from diesel-powered vehicles completely prevented egg fertilization of the sea urchin S. intermedius and caused pronounced membrane depolarization in the cells of both tested microalgae species at concentrations between 10 and 100 mg/L. The sample with the highest proportion of submicron particles and the highest content of polycyclic aromatic hydrocarbons (PAHs) had the highest growth rate inhibition in both microalgae species and caused high toxicity to the crustacean. The toxicity level of the other samples varied among the species. We can conclude that metal content and the difference in the concentrations of PAHs by itself did not directly reflect the toxic level of VEPs, but the combination of both a high number of submicron particles and high PAH concentrations had the highest toxic effect on all the tested species.


2014 ◽  
Author(s):  
Matthew C Foster ◽  
Jarrett E Byrnes ◽  
Daniel C Reed

Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time and the extent to which urchins can use alternate species of algae or a mixed diet of multiple algal species to maintain fitness when giant kelp is unavailable is unknown. We experimentally examined the effects of single and mixed species diets on consumption, growth and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. Urchins were fed single species diets consisting of one of four common species of macroalgae (the kelps Macrocystis pyrifera and Pterygophora californica, and the red algae Chondracanthus corymbiferus and Rhodymenia californica (hereafter referred to by genus) or a mixed diet containing all four species ad libitum over a 13-week period in a controlled laboratory setting. Urchins fed Chondracanthus, Macrocystis and a mixed diet showed the highest growth (in terms of test diameter, wet weight and jaw length) and gonad weight while urchins fed Pterygophora and Rhodymenia showed the lowest. Urchins consumed their preferred food, Macrocystis at the highest rate when offered a mixture, but consumed Chondracanthus or Macrocystis at similar rates when the two algae were offered alone. The differences in urchin feeding behavior and growth observed between these diet types suggest the relative availability of the algae tested here could affect urchin populations and their interactions with the algal assemblage. The fact that the performance of urchins fed Chondracanthus was similar or higher than those fed the preferred Macrocystis suggests purple sea urchins could sustain growth and reproduction during times of low Macrocystis abundance as is common following large wave events.


2014 ◽  
Vol 15 (3) ◽  
pp. 475 ◽  
Author(s):  
S. GARCIA-SANZ ◽  
P. G. NAVARRO ◽  
F. TUYA

Despite sea-urchins can play an important role affecting the community structure of subtidal bottoms, factors controlling the dynamics of sea-urchin populations are still poorly understood. We assessed the seasonal variation in recruitment of three sea-urchin species (Diadema africanum, Paracentrotus lividus and Arbacia lixula) at Gran Canaria Island (eastern Atlantic) via monthly deployment of artificial collectors throughout an entire annual cycle on each of four adjacent habitat patches (seagrasses, sandy patches, ‘urchin-grazed’ barrens and macroalgal-dominated beds) within a shallow coastal landscape. Paracentrotus lividus and A. lixula had exclusively one main recruitment peak in late winter-spring. Diadema africanum recruitment was also seasonal, but recruits appeared in late summer-autumn, particularly on ‘urchin-grazed’ barrens with large abundances of adult conspecifics. In conclusion, this study has demonstrated non-overlapping seasonal recruitment patterns of the less abundant species (P. lividus and A. lixula) with the most conspicuous species (D. africanum) in the study area.


Sign in / Sign up

Export Citation Format

Share Document