scholarly journals Seagrasses provide a novel ecosystem service by trapping marine plastics

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Sanchez-Vidal ◽  
Miquel Canals ◽  
William P. de Haan ◽  
Javier Romero ◽  
Marta Veny

AbstractThere is strong evidence that the seafloor constitutes a final sink for plastics from land sources. There is also evidence that part of the plastics lying on the shallow seafloor are washed up back to the shoreline. However, little is known on the natural trapping processes leading to such landwards return. Here we investigate microplastics and larger plastic debris within beached seagrass remains including balls (aegagropilae) made of natural aggregates of vegetal fibers intertwined by seawater motion. We found up to 1470 plastic items per kg of plant material, which were mainly composed of negatively buoyant polymer filaments and fibers. Our findings show that seagrass meadows promote plastic debris trapping and aggregation with natural lignocellulosic fibers, which are then ejected and escape the coastal ocean. Our results show how seagrasses, one of the key ecosystems on Earth in terms of provision of goods and services, also counteract marine plastic pollution. In view of our findings, the regression of seagrass meadows in some marine regions acquires a new dimension.

Author(s):  
Philip V. Mladenov

The coastal regions of the Global Ocean comprise a narrow strip of ocean extending from the shoreline to the edge of the continental shelf. This coastal ocean environment accounts for only about 7 per cent of the area of the Global Ocean, but it is of huge importance to human society. Roughly 44 per cent of the human population lives within 150 kilometres of a coast, meaning that the coastal ocean is heavily impacted by human activities. ‘Life in the coastal ocean’ describes the kelp bed habitats, the seagrass meadows, and soft-bottom communities, before considering the impact of harmful phytoplankton blooms, biological invasions, and the increase in plastic debris in our oceans.


2020 ◽  
Vol 148 ◽  
pp. 07001
Author(s):  
Setyo Budi Kurniawan ◽  
Muhammad Fauzul Imron

The purpose of this research was to investigate the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Visible plastic debris were collected from three (3) sampling points along the intertidal area of Wonorejo River Estuary. The correlation between sampling points (SPs) and the amount of the collected plastic debris (CPD) was analysed using one-way ANOVA. Result of one-way ANOVA showed that the sampling point was significantly affect the amount of the collected plastic debris (p<0.05). A further analysis using Tukey’s Significance Honest Test indicating a significantly higher CPD on SP2 compared to the SP1 and SP3 (p<0.05). The amount of CPD were 126.07±12.00 g dry weight/m2 from SP1, 375.97±16.72 g dry weight/m2 from SP2, and 291.13±36.28 g dry weight/m2 from SP3. The highest percentage of collected debris item was plastic bags (up to 57.90%), followed by bottle caps (up to 16.65%). The most identified plastic types were Low-Density Polyethylene (LDPE) (up to 73.13%), followed by Polypropylene (PP) (up to 17.22%). Understanding the accumulation of plastic debris in estuary is a fundamental requirement to conduct an advance research related to the marine plastic pollution and to determine further actions to solve this problem.


2016 ◽  
Author(s):  
Bruno Sainte-Rose ◽  
Laurent Lebreton ◽  
Joao de Lima Rego ◽  
Frank Kleissen ◽  
Julia Reisser

The impact of plastic pollution on marine ecosystems and global economy has been drawing public concern since the end of the 20th century. To mitigate this issue, The Ocean Cleanup (TOC) Foundation is developing technologies to extract, prevent, and intercept plastic debris from coastal and oceanic environments. The core technology being optimized is the use of floating booms placed perpendicular to the main ocean plastic flow so it can concentrate plastic debris to a point where it can be extracted, shipped and processed in a cost-effective manner. In order to optimize the system’s field efficiency (i.e. mass of ocean plastic captured per length of floating boom), a multi-scale approach has been elaborated, where temporal and spatial scales span over several orders of magnitude. Here we introduce this general multi-scale method alongside its assumptions and multi-scale models. We then describe two application examples, the first corresponding to our coastal pilot in the Japanese island of Tsushima and the second related to our main cleanup target area: the so-called Great Pacific Garbage Patch, situated between Hawaii and the US west coast.


2021 ◽  
Vol 8 ◽  
Author(s):  
Matthias Egger ◽  
Lauren Quiros ◽  
Giulia Leone ◽  
Francesco Ferrari ◽  
Christiana M. Boerger ◽  
...  

Despite an increasing research conducted on ocean plastic pollution over the last decade, there are still large knowledge gaps in our current understanding of how floating plastic debris accumulating in subtropical oceanic gyres may harm the surface-associated pelagic community known as neuston. Removing floating plastic debris from the surface ocean can minimize potentially adverse effects of plastic pollution on the neuston, as well as prevent the formation of large quantities of secondary micro- and nanoplastics. However, due to the scarcity of observational data from remote and difficult to access offshore waters, neuston dynamics in subtropical oceanic gyres and thus the potential impacts of plastic pollution as well as of cleanup activities on the neuston remain uncertain. Here, we provide rare observational data of the relative distribution of floating plastic debris (0.05–5 cm in size) and members of the neuston in the eastern North Pacific Ocean. Our results reveal that the dominant neustonic species co-occurring with high concentrations of floating plastic debris in the North Pacific Garbage Patch (NPGP) such as Porpita porpita, Halobates spp., pteropods, isopods, heteropods, and crabs depict either a low atmospheric drag due to physical attributes or a potential plastic-associated fitness benefit such as increased surface area for oviposition and structure for habitat. We further observe relatively higher plastic to organism ratios inside the NPGP for most target species compared to waters outside the NPGP. The findings presented here provide a first observational baseline to develop ecological models that can help evaluate the long-term risks of plastic pollution and of offshore cleanup activities for neuston in the eastern North Pacific Ocean. We further suggest that offshore mitigation strategies aiming at removing floating plastic debris from the ocean surface need to evaluate both, the direct impact of neuston bycatch during plastic removal on neuston population dynamics, as well as the potential benefits of reducing the negative effects of plastic pollution on the neuston.


2021 ◽  
Author(s):  
Matthias Egger ◽  
Wouter Jan Strietman ◽  
Ulphard Thoden van Velzen ◽  
Ingeborg Smeding-Zuurendonk ◽  
Laurent Lebreton

&lt;p&gt;Citizen science programs and tracking applications have been used in the collection of data on plastic debris in marine environments to determine its composition and sources. These programs, however, are mostly focused on debris collected from beach cleanups and coastal environments. Large plastic debris currently afloat at sea, which is a significant contributor to marine plastic pollution and a major source of beach litter, is less well-characterized.&lt;/p&gt;&lt;p&gt;Transported by currents, wind and waves, positively buoyant plastic objects eventually accumulate at the sea surface of subtropical oceanic gyres, forming the so-called ocean garbage patches. It is important to know where the debris that persists in the offshore gyres is entering the ocean, where it is produced and what practices (commercial, cultural, industrial) are contributing to the accumulation of these debris into the ocean garbage patches. This information coupled to data on how long and well the plastics persevere at the sea surface is necessary for creating effective and efficient mitigation strategies.&lt;/p&gt;&lt;p&gt;Here we provide a comprehensive assessment of plastic debris afloat in the North Pacific Garbage Patch (NPGP). Offshore debris collected by The Ocean Cleanup&amp;#8217;s System 001b from the NPGP in 2019 was analyzed using the Litter-ID method, which applies an adapted and expended version of the OSPAR guideline for monitoring beach litter. Our results reveal new insights into the composition, origin and age of plastic debris accumulating at the ocean surface in the NPGP. The standardized methodology applied here further enables a first thorough comparison of plastic debris accumulating in offshore waters and coastal environments.&lt;/p&gt;


2020 ◽  
Author(s):  
Tim van Emmerik ◽  
Anna Schwarz

&lt;p&gt;Macroplastic (&gt;0.5 cm) pollution in aquatic environments is an emerging environmental risk, as it negatively impacts ecosystems, endangers aquatic species, and causes economic damage. Rivers are known to play a crucial role in transporting land-based plastic waste into the world&amp;#8217;s oceans. However, rivers and their ecosystems are also directly affected by plastic pollution. To better quantify global plastic pollution pathways and to effectively reduce sources and risks, a thorough understanding of riverine macroplastic sources, transport, fate and effects is crucial. In our presentation, we discuss the current scientific state on macroplastic in rivers and evaluate existing knowledge gaps. We discuss the origin and fate of riverine plastics, including processes and factors influencing macroplastic transport and its spatiotemporal variation. Moreover, we present an overview of monitoring and modeling efforts to characterize riverine plastic transport and give examples of typical values from around the world (van Emmerik &amp; Schwarz, 2020). With our presentation, we aim to present a comprehensive overview of riverine macroplastic research to date and suggest multiple ways forward for future research.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;van Emmerik, T, Schwarz, A. Plastic debris in rivers. WIREs Water. 2020; 7:e1398. https://doi.org/10.1002/wat2.1398&lt;/p&gt;


2020 ◽  
Author(s):  
Nicolas Beriot ◽  
Raul Zornoza ◽  
Paul Zomer ◽  
Onurcan Ozbolat ◽  
Eva Lloret ◽  
...  

&lt;p&gt;Plastic mulch is widely used in agriculture to decrease the water evaporation, increase the soil temperature, or prevent weeds. Most plastic mulches are made of highly resistant Low Density Polyethylene (LDPE). The incomplete removal of polyethylene mulch after usage causes plastic pollution. Pro-oxidant Additive Containing (PAC) and &amp;#8220;biodegradable&amp;#8221; (Bio) plastics were developed to avoid the need of plastic removal while preventing the plastic debris accumulation. In conventional agriculture, the use of pesticides releases substances which can be sorbed to soil particles and plastic debris. Pesticides and their residues may affect the soil microbial community. Some microbial groups are capable of using applied pesticide as a source of energy and nutrients to multiply, whereas the pesticide may be toxic to other organisms. Little is known about the long term effects of plastic debris accumulations in relation with pesticides residues. We studied 36 parcels in commercial farms, either organic or conventional, where plastic mulch has been used for 5 to 20 years in Cartagena&amp;#8217;s country side (SE Spain). We compared the macro and micro plastic debris contents, pesticides residue levels, soil physiochemical properties in the soil surface among all parcels. Eighteen insecticides, 17 fungicides, and 6 herbicides were analysed with LC-MS/MS and GC-MS/MS systems. The ribosomal 16S and ITS DNA variable regions were sequenced to study shifts in bacterial and fungal communities, respectively. We found accumulation of plastic debris in all soil samples, plastic contents being higher in soils from organic farms. The average plastic concentration &amp;#160;in both managements was 0.20&amp;#177;0.26 g/kg of plastic debris. Soils under conventional management contained on average more than 6 different pesticide residues and an overall pesticides &amp;#160;concentration of 0.20&amp;#177;0.18 mg/kg. The interactions between plastic debris concentration and pesticide concentration will be presented, together with the interaction of plastic and pesticides in soil with changes in soil microbial communities, identifying the most sensitive groups which can act as bioindicators for plastic and pesticide pollution in soil.&lt;/p&gt;


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3733 ◽  
Author(s):  
Elizabeth J. Connors

Coral reef ecosystems of the South Pacific are extremely vulnerable to plastic pollution from oceanic gyres and land-based sources. To describe the extent and impact of plastic pollution, the distribution of both macro- (>5 mm) and microplastic (plastic < 5 mm) of the fringing reef of an isolated South Pacific island, Mo’orea, French Polynesia was quantified. Macroplastic was found on every beach on the island that was surveyed. The distribution of this plastic was categorized by site type and by the presence of Turbinaria ornata, a common macroalgae on Mo’orea. Microplastics were discovered in the water column of the fringing reef of the island, at a concentration of 0.74 pieces m−2. Additionally, this study reports for the first time the ingestion of microplastic by the corallimorpha Discosoma nummiforme. Microplastics were made available to corallimorph polyps in a laboratory setting over the course of 108 h. Positively and negatively buoyant microplastics were ingested, and a microplastic particle that was not experimentally introduced was also discovered in the stomach cavity of one organism. This study indicates that plastic pollution has the potential to negatively impact coral reef ecosystems of the South Pacific, and warrants further study to explore the broader potential impacts of plastic pollution on coral reef ecosystems.


2018 ◽  
Author(s):  
Kaisar Akhir ◽  
Mary S Wisz

Indonesia’s rich marine biodiversity, endemism and long natural coast lines attract visitors from around the World. Its tourism industry contributes to a high percentage of the country’s GDP, and is a vital source of income for many local communities. Recently, the Indonesian government announced a plan to focus in developing two coastal regions (Mandalika and Labuan Bajo) as the “New Bali” in 2018. These marine tourism areas are however challenged by high levels of plastic pollution and require restoration. Mass cleanups are planned on the islands with support from the government in cooperation with the stakeholders such as local communities and industries. However, there is so far no integrated plan to safeguard the areas from the accumulation of future plastic debris. The Sustainostic (Sustainable No Plastic) Nusantara project will provide stakeholders and the Indonesian government with a policy roadmap to manage marine plastic debris in these areas. Recommendations will be based on a global analysis of plastic waste management approaches and Indonesia’s National Plan of Action on Marine Plastic Debris for 2017-2025. With intense stakeholder involvement, it will include methods applied on national, sub-national and community levels of governance, market-based and techno-entrepreneurial solutions, education and outreach.


Sign in / Sign up

Export Citation Format

Share Document