Crime and Victimization in Cyberspace

Author(s):  
Maurizio Tonellotto

The development of information technologies in recent years has transformed our society into a “hyper-connected space” in which the pitfalls, the risks, as well as the damages to the victims have grown exponentially. Identity theft, hacking, information piracy, threats to data integrity, on-line scams, or CEO fraud are the commonplace keywords that are part of the internet of things. Cybercrime can cause serious harm and long-term effects, whether the victims are individuals or companies. It is important to address the definition of “cybercrime,” since the term itself refers to a harmful behavior that is in some way related to a single computer or to a computer network and examine the main types of computer crimes in order to understand which countermeasures can be implemented to counteract these phenomena where the human factor is the fundamental component to promote the concept of “conscious attention” as a necessary resource to limit the risks of “cyber victimization.”

2019 ◽  
Vol 3 (2) ◽  
pp. 14-21
Author(s):  
Majed Alhaisoni

The Internet of Things is the current and next revolution in integrating various technologies and wireless communications. It has been shown to make an important contribution in various modes of communication, in homes, offices and other buildings. However, certain research issues are still remain, such as life span of the network and a definition of the most influential nodes in communications, which affect the overall energy distribution. This paper introduces a new approach to enhance the communication over the internet of things, by combining two different domains, the computer network and network science. Various scenarios have been thoroughly implemented and tested over different network topologies. The results show clear enhancements on network centrality and overall energy distribution.


2021 ◽  
Vol 39 (4) ◽  
pp. 1-33
Author(s):  
Fulvio Corno ◽  
Luigi De Russis ◽  
Alberto Monge Roffarello

In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of trigger-action rules such as “IF the entrance Nest security camera detects a movement, THEN blink the Philips Hue lamp in the kitchen.” Unfortunately, the spread of new supported technologies makes the number of possible combinations between triggers and actions continuously growing, thus motivating the need of assisting users in discovering new rules and functionality, e.g., through recommendation techniques. To this end, we present , a semantic Conversational Search and Recommendation (CSR) system able to suggest pertinent IF-THEN rules that can be easily deployed in different contexts starting from an abstract user’s need. By exploiting a conversational agent, the user can communicate her current personalization intention by specifying a set of functionality at a high level, e.g., to decrease the temperature of a room when she left it. Stemming from this input, implements a semantic recommendation process that takes into account ( a ) the current user’s intention , ( b ) the connected entities owned by the user, and ( c ) the user’s long-term preferences revealed by her profile. If not satisfied with the suggestions, then the user can converse with the system to provide further feedback, i.e., a short-term preference , thus allowing to provide refined recommendations that better align with the original intention. We evaluate by running different offline experiments with simulated users and real-world data. First, we test the recommendation process in different configurations, and we show that recommendation accuracy and similarity with target items increase as the interaction between the algorithm and the user proceeds. Then, we compare with other similar baseline recommender systems. Results are promising and demonstrate the effectiveness of in recommending IF-THEN rules that satisfy the current personalization intention of the user.


Author(s):  
Zelal Gültekin Kutlu

In this study, the periodical differences of industrial revolutions, which is one of the effects of technological developments in the industrial field, and the last stage of it are mentioned. With the latest industrial revolution called Industry 4.0, machines work in harmony with technology at every stage of industrial areas. This period, known as Industry 4.0 or the fourth industrial revolution, refers to the system in which the latest production technologies, automation systems, and the technologies that make up this system exchange data with each other. In addition to the information technologies and automation systems used in Industry 3.0, industrial production has gained a whole new dimension with the use of the internet. With internet networks, machines, operators, and robots now work in harmony. At this point, the concept of internet of objects becomes important. Therefore, another focus of the study is the concept of internet of objects. There are some assumptions about the uses, benefits, and future status of the internet of things.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1400 ◽  
Author(s):  
Javier Silvestre-Blanes ◽  
Víctor Sempere-Payá ◽  
Teresa Albero-Albero

Today, a wide range of developments and paradigms require the use of embedded systems characterized by restrictions on their computing capacity, consumption, cost, and network connection. The evolution of the Internet of Things (IoT) towards Industrial IoT (IIoT) or the Internet of Multimedia Things (IoMT), its impact within the 4.0 industry, the evolution of cloud computing towards edge or fog computing, also called near-sensor computing, or the increase in the use of embedded vision, are current examples of this trend. One of the most common methods of reducing energy consumption is the use of processor frequency scaling, based on a particular policy. The algorithms to define this policy are intended to obtain good responses to the workloads that occur in smarthphones. There has been no study that allows a correct definition of these algorithms for workloads such as those expected in the above scenarios. This paper presents a method to determine the operating parameters of the dynamic governor algorithm called Interactive, which offers significant improvements in power consumption, without reducing the performance of the application. These improvements depend on the load that the system has to support, so the results are evaluated against three different loads, from higher to lower, showing improvements ranging from 62% to 26%.


2017 ◽  
Vol 55 (3) ◽  
pp. 124-131 ◽  
Author(s):  
Tiago P.C. De Andrade ◽  
Carlos A. Astudillo ◽  
Luiz R. Sekijima ◽  
Nelson L.S. Da Fonseca

2001 ◽  
Vol 45 (1) ◽  
pp. 191-201
Author(s):  
Rüdiger Wink

Abstract Despite a long tradition of dealing with problems of optimal intergenerational allocation, economists are rarely integrated into debates about strategies to cope with decisions with long-term effects. Cost-benefitanalyses as typical economic methods to evaluate long-term investment strategies mostly neglect the need for basic normative decisions, e.g. about the definition of future generations and their interests. This paper presents first steps of an institutional economics' framework to overcorne these shortcornings and to improve the opportunities of an integrated interdisciplinary approach.


Author(s):  
М.А. Держо ◽  
М.М. Лаврентьев ◽  
А.В. Шафаренко

В данной работе обсуждаются фундаментальные вопросы разработки программ магистратуры в области Интернета вещей (Internet of Things — IoT). Мы кратко сравниваем предложения Сколтеха и Стэнфорда и утверждаем, что наиболее гибкое решение достигается посредством вводного блока и четырех параллельных потоков учебных курсов: обработка сигналов и управление, обучение машин и искусственный интеллект (ИИ), программирование и схемотехника платформ с применением микроконтроллеров, и, наконец, сети и кибербезопасность. Вводный блок предполагается оснастить достаточным количеством предметов по выбору, чтобы поступающие выпускники бакалавриата из областей прикладной математики, информационных технологий и электроники/телекоммуникаций могли приобрести необходимые знания для освоения потоковых курсов. Мы утверждаем, что еще одним необходимым отличием программы IoT должен явиться междисциплинарный групповой дипломный проект значительного объема, также основанный на потоковых курсах. This paper discusses the fundamentals of postgraduate curriculum development for the area of the Internet of Things (IoT). We provide a brief contrasting analysis of Skoltech and Stanford Masters programs and argue that the most flexible way forward is via the introduction of a leveling-off, elective introductory stage, and four parallel course streams: signal processing and control; Artificial Intelligence (AI), and machine learning; microcontroller systems design; and networks and cyber security. The leveling-off stage is meant to provide sufficient electives for graduates of applied math, Information Technologies (IT), or electronics/telecom degrees to learn the necessary fundamentals for the stream modules. We argue that another distinguishing feature of an IoT masters program is a large project drawing on the stream modules and requiring a multidisciplinary, team development effort.


Author(s):  
Mohammad Haasin Farooq ◽  
Muhammad Zain ◽  
Muhammad Bilal Khalid ◽  
Saima Zafar

The Internet of Things (IoT) has dominated the digital world by enabling thousands of physical devices to communicate with each other and share useful data over the Internet. With use cases spanning every sphere of modern life, the IoT is all set to revolutionize the traveling sector by extending services associated with safety, security, surveillance, tracking, comfort, and a lot more. This paper presents the design and implementation of a prototype Easy-Weigh-Out, based on the principles of the IoT which enables a user to run Android-based mobile application and view the weight of luggage and track its location without any contact with it. The hardware of the system is built around Arduino UNO microcontroller which interfaces with a load cell (20 kg) via A/D converter and a NEO-6M Global Positioning System (GPS) module for tracking of the bag. The system uploads data to a Cloud server using ESP8266 Wi-Fi module. Our results show the real-time weight and tracking of the bag at a click of a button as well as long-term data logging.


Author(s):  
Dan-Radu Berte

Abstract IoT, or the Internet of Things, has been in use since circa 1999. It defines a next chapter in the evolution of the Internet where computing devices embedded in everyday objects are able to send and receive data themselves. In recent years miniaturization and economies of scale brought a boon of new devices to the consumer and enterprise market, prompting Gartner to predict over 20bln live IoT devices by 2020. However, the definition of IoT is loose and, for the purpose of predicting trends or discussing security, formulating a clear understanding of the term is crucial. In fact, Internet of Things is a term only mostly used by the media, academia and the industry. Customers in the consumer space refer to the technologies by their benefit describing term of “Smart Home”. A quick analysis of this gap shows how it’s entirely possible no knowledge permeates the business and market worlds because of the incompatible terms used. As more devices, OSes and heterogeneous platforms entrench the concept of a new digital lifestyle, the new “Digital Kingdom” opens its doors to radical disruption, such as the latest massive Mirai and Reaper attacks. Our ability to correctly define the IoT, it’s platforms and components, should lead to better market dynamics and better preparedness, as one can’t secure something that can’t be defined. This paper proposes to further understand the IoT by exploring available definitions, reiterating misuse and equivocal perception, concluding with a more suiting, contemporary definition.


Sign in / Sign up

Export Citation Format

Share Document