Macroscopic Group Robots Inspired By “Brownian Motion”

2020 ◽  
pp. 17-57
Author(s):  
Teturo Itami

The sections contained in this chapter, Macroscopic Group robots inspired by “Brownian motion”, examine the basic concepts and the methods to develop systems of new type of group robots. We take robots especially with neither external sensors nor apparatuses for mutual communication. In microscopic physics we have a phenomena of Brownian motion. We note that in Brownian motion pollen particles can be motivated by collision with surrounding molecules although each molecule has neither sensor nor mutual communication. By setting temperature gradient surrounding the pollen particle, controlling its motion is possible. So when we note correspondence between molecules and robots, we will obtain a transportation system of macroscopic objects that correspond to pollen particles in Brownian motion. We use a potential force signal that corresponds to temperature in Brownian motion. To perform the tasks, we show and solve various challenging problems in fundamental formulae, simulation scheme, and control method in these areas.

2011 ◽  
Vol 58-60 ◽  
pp. 1306-1310
Author(s):  
Xiao Hui Xie ◽  
Cui Ma ◽  
Qiang Sun ◽  
Chang Jie Luo ◽  
Ru Xu Du

Force-Reflected Telepresence Teleoperation system has been widely used. Generally, force and torque sensors are installed on the robot to realize haptic perception. Control commands and force-reflected information from the robot are transmitted by communication link, such as internet. However, this structure not only brings difficulties of installation and commissioning, but also reduces the system flexibility and makes control more difficult. And it is prone to interfered in microenvironment. This paper presents a new type of energy transfer method to achieve it by power line instead of internet between the Master-slave Manipulators. This method achieves the consistency of force-reflected without using sensors to measure the conditions. In practical application, it requires to design an energy managed controller to insure the stability and obtain precision in synchronization between the master part and slave part. This paper gives the theory, the system structure and control method of force telepresence teleoperation based on power line.


2019 ◽  
Vol 256 ◽  
pp. 05004
Author(s):  
Sun Zihan ◽  
Yankang Ding ◽  
Yiqun Zhang ◽  
Dongwu Yang ◽  
Na Li

Firstly, based on the structural characteristics of a new type of hoop truss deployable antenna, this paper derives the motion transformation relation between two hoop modules by using the method of coordinate transformation, and establishes the general model for deployment kinematic analysis, which can be applied to analyze the position, velocity and acceleration of any point on the structure. Secondly, according to the relation between the driving cable and the hoop module, the motion planning of the hoop module is transformed into the motion control of the driving cable, which can realize the deploying position control of the antenna. Finally, numerical simulations show the control method can make the antenna smoothly deploy following the specified deployable motion.


Author(s):  
A.L. Arutyunov

The article presents a set of methods and models of the mathematical foundations of management based on the basic concepts of functional analysis and generalized functions, as well as martingale methods in boundary crossing problems by Brownian motion, aimed at studying and studying optimization processes in managing the effectiveness of the stock and bond portfolio on the valuable market securities (derivatives).


JEMAP ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Albertus Reynaldo Kurniawan ◽  
Bayu Prestianto

Quality control becomes an important key for companies in suppressing the number of defective produced products. Six Sigma is a quality control method that aims to minimize defective products to the lowest point or achieve operational performance with a sigma value of 6 with only yielding 3.4 defective products of 1 million product. Stages of Six Sigma method starts from the DMAIC (Define, Measure, Analyze, Improve and Control) stages that help the company in improving quality and continuous improvement. Based on the results of research on baby clothes products, data in March 2018 the percentage of defective products produced reached 1.4% exceeding 1% tolerance limit, with a Sigma value of 4.14 meaning a possible defect product of 4033.39 opportunities per million products. In the pareto diagram there were 5 types of CTQ (Critical to Quality) such as oblique obras, blobor screen printing, there is a fabric / head cloth code on the final product, hollow fabric / thin fabric fiber, and dirty cloth. The factors caused quality problems such as Manpower, Materials, Environtment, and Machine. Suggestion for consideration of company improvement was continuous improvement on every existing quality problem like in Manpower factor namely improving comprehension, awareness of employees in producing quality product and improve employee's accuracy, Strength Quality Control and give break time. Materials by making the method of cutting the fabric head, the Machine by scheduling machine maintenance and the provision of needle containers at each employees desk sewing and better environtment by installing exhaust fan and renovating the production room.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


2019 ◽  
Vol 8 (4) ◽  
pp. 9538-9542

In vision of searching for the right Unmanned Aerial System (UAS) for a specific mission, there are multiple factors to be considered by the operator such as mission, endurance, type of payload and range of the telemetry and control. This research is focusing on extending control range of the UAS by using 4G-LTE network to enable beyond-line-of-sight flying for the commercial UAS. Major UAS such Global Hawk, Predator MQ-1 are able to fly thousands of kilometers by the use of satellite communication. However, the satellite communication annual license subscription can be very expensive. With this situation in mind, a new type of flight controller with 4G-LTE communication has been developed and tested. Throughout the research, blended-wing-body (BWB) Baseline B2S is used as the platform for technology demonstrator. Result from this analysis has proven that the proposed system is capable to control a UAS from as far as United Kingdom, with a latency less than 881 ms in average. The new added capability can potentially give the commercial UAS community a new horizon to be able to control their UAS from anywhere around the world with the availability of 4G-LTE connection


2014 ◽  
Vol 644-650 ◽  
pp. 879-883
Author(s):  
Jing Jing Yu

In various forms of movement of finger rehabilitation training, Continuous Passive Motion (CPM) of single degree of freedom (1 DOF) has outstanding application value. Taking classic flexion and extension movement for instance, this study collected the joint angle data of finger flexion and extension motion by experiments and confirmed that the joint motion of finger are not independent of each other but there is certain rule. This paper studies the finger joint movement rule from qualitative and quantitative aspects, and the conclusion can guide the design of the mechanism and control method of finger rehabilitation training robot.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 26568-26582
Author(s):  
Hongbo Wang ◽  
Jingyuan Chang ◽  
Haoyang Yu ◽  
Haiyang Liu ◽  
Chao Hou ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1587
Author(s):  
Krzysztof Wrobel ◽  
Krzysztof Tomczewski ◽  
Artur Sliwinski ◽  
Andrzej Tomczewski

This article presents a method to adjust the elements of a small wind power plant to the wind speed characterized by the highest annual level of energy. Tests were carried out on the basis of annual wind distributions at three locations. The standard range of wind speeds was reduced to that resulting from the annual wind speed distributions in these locations. The construction of the generators and the method of their excitation were adapted to the characteristics of the turbines. The results obtained for the designed power plants were compared with those obtained for a power plant with a commercial turbine adapted to a wind speed of 10 mps. The generator structure and control method were optimized using a genetic algorithm in the MATLAB program (Mathworks, Natick, MA, USA); magnetostatic calculations were carried out using the FEMM program; the simulations were conducted using a proprietary simulation program. The simulation results were verified by measurement for a switched reluctance machine of the same voltage, power, and design. Finally, the yields of the designed generators in various locations were determined.


Sign in / Sign up

Export Citation Format

Share Document