Impact of Duty-Cycling

2020 ◽  
pp. 1557-1579
Author(s):  
Nassima Bouadem ◽  
Rahim Kacimi ◽  
Abdelkamel Tari

Wireless Sensor Networks (WSNs) became omnipresent in our daily life. As a result, they have emerged as a fruitful research topic, because of their advantages, especially their low cost and easy deployment. However, these attractive merits imply that available resources, especially energy, in each sensor node have to be wisely used through different network dynamics. Beside other techniques, duty-cycling (DC) is the first widely used one to save energy in WSNs. However, due to the continuous changes, mainly in the energy availability, the nodes have to operate in a very low DC which is a required strategy in many applications in order to keep the network operational. This article presents a detailed survey that provides an interesting view of different DC schemes which are proposed to tackle the specific WSN challenges, and it also gives a novel classification of DC schemes that includes the most recent techniques. The last part aims to investigate the impact of the low DC on both the network and the application layer.

Author(s):  
Nassima Bouadem ◽  
Rahim Kacimi ◽  
Abdelkamel Tari

Wireless Sensor Networks (WSNs) became omnipresent in our daily life. As a result, they have emerged as a fruitful research topic, because of their advantages, especially their low cost and easy deployment. However, these attractive merits imply that available resources, especially energy, in each sensor node have to be wisely used through different network dynamics. Beside other techniques, duty-cycling (DC) is the first widely used one to save energy in WSNs. However, due to the continuous changes, mainly in the energy availability, the nodes have to operate in a very low DC which is a required strategy in many applications in order to keep the network operational. This article presents a detailed survey that provides an interesting view of different DC schemes which are proposed to tackle the specific WSN challenges, and it also gives a novel classification of DC schemes that includes the most recent techniques. The last part aims to investigate the impact of the low DC on both the network and the application layer.


2016 ◽  
Vol 773 ◽  
pp. 012033
Author(s):  
M. A. Cowell ◽  
B. P. Lechene ◽  
P. Raffone ◽  
J. W. Evans ◽  
A. C. Arias ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 144-151 ◽  
Author(s):  
Sudip Misra ◽  
Sanku Kumar Roy ◽  
Arijit Roy ◽  
Mohammad S. Obaidat ◽  
Avantika Jha

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Felicia Engmann ◽  
Ferdinand Apietu Katsriku ◽  
Jamal-Deen Abdulai ◽  
Kofi Sarpong Adu-Manu

Energy conservation is critical in the design of wireless sensor networks since it determines its lifetime. Reducing the frequency of transmission is one way of reducing the cost, but it must not tamper with the reliability of the data received at the sink. In this paper, duty cycling and data-driven approaches have been used together to influence the prediction approach used in reducing data transmission. While duty cycling ensures nodes that are inactive for longer periods to save energy, the data-driven approach ensures features of the data that are used in predicting the data that the network needs during such inactive periods. Using the grey series model, a modified rolling GM(1,1) is proposed to improve the prediction accuracy of the model. Simulations suggest a 150% energy savings while not compromising on the reliability of the data received.


2019 ◽  
Vol 9 (12) ◽  
pp. 2489 ◽  
Author(s):  
Fubao Zhang ◽  
Xianming Wang ◽  
Haonan Liu ◽  
Chunli Liu ◽  
Yong Wan ◽  
...  

Along with the development of industry and the improvement of people’s living standards, peoples’ demand on resources has greatly increased, causing energy crises and environmental pollution. In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally-friendly, and sustainable technology, and it has become a hot research topic. However, current photocatalytic technology cannot meet industrial requirements. The biggest challenge in the industrialization of photocatalyst technology is the development of an ideal photocatalyst, which should possess four features, including a high photocatalytic efficiency, a large specific surface area, a full utilization of sunlight, and recyclability. In this review, starting from the photocatalytic reaction mechanism and the preparation of the photocatalyst, we review the classification of current photocatalysts and the methods for improving photocatalytic performance; we also further discuss the potential industrial usage of photocatalytic technology. This review also aims to provide basic and comprehensive information on the industrialization of photocatalysis technology.


Author(s):  
Chaitra HV ◽  
Dr. Ravikumar G.K

<p>Wireless sensor has attained wide interest across various industries due to availability of low cost sensor device. Preserving battery/energy of these sensor device is most desired. Recently, many approaches has been presented to improve lifetime of sensor network adopting clustering technique. Cluster head selection play an important factor in improving lifetime of cluster based network. For improving cluster head selection multi-objective function are presented in recent time by adopting evolutionary computing and metaheuristic algorithm. However, the existing model incurs computation overhead due to NP-Hard problem and connectivity issues is not considered. Thus affecting network performance. To address the research issues, this work present a novel Multi-objective imperialist competitive algorithm (MOICA) for cluster head selection and routing optimization. Experiment are conducted to evaluate the performance of MOICA over LEACH in term of lifetime performance considering first sensor node death and 75% sensor node death. The outcome shows MOICA achieves significance improvement over LEACH based protocols. </p>


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2351 ◽  
Author(s):  
Vladimir Risojević ◽  
Robert Rozman ◽  
Ratko Pilipović ◽  
Rok Češnovar ◽  
Patricio Bulić

Wireless sensor networks can provide a cheap and flexible infrastructure to support the measurement of noise pollution. However, the processing of the gathered data is challenging to implement on resource-constrained nodes, because each node has its own limited power supply, low-performance and low-power micro-controller unit and other limited processing resources, as well as limited amount of memory. We propose a sensor node for monitoring of indoor ambient noise. The sensor node is based on a hardware platform with limited computational resources and utilizes several simplifications to approximate more complex and costly signal processing stage. Furthermore, to reduce the communication between the sensor node and a sink node, as well as the power consumed by the IEEE 802.15.4 (ZigBee) transceiver, we perform digital A-weighting filtering and non-calibrated calculation of the sound pressure level on the node. According to experimental results, the proposed sound level meter can accurately measure the noise levels of up to 100 dB, with the mean difference of less than 2 dB compared to Class 1 sound level meter. The proposed device can continuously monitor indoor noise for several days. Despite the limitations of the used hardware platform, the presented node is a promising low-cost and low-power solution for indoor ambient noise monitoring.


2020 ◽  
Author(s):  
Koppala Guravaiah ◽  
Arumugam Kavitha ◽  
Rengaraj Leela Velusamy

In recent years, wireless sensor networks have became the effective solutions for a wide range of IoT applications. The major task of this network is data collection, which is the process of sensing the environment, collecting relevant data, and sending them to the server or BS. In this chapter, classification of data collection protocols are presented with the help of different parameters such as network lifetime, energy, fault tolerance, and latency. To achieve these parameters, different techniques such as multi-hop, clustering, duty cycling, network coding, aggregation, sink mobility, directional antennas, and cross-layer solutions have been analyzed. The drawbacks of these techniques are discussed. Finally, the future work for routing protocols in wireless sensor networks is discussed.


Sign in / Sign up

Export Citation Format

Share Document