Impact of Duty-Cycling

Author(s):  
Nassima Bouadem ◽  
Rahim Kacimi ◽  
Abdelkamel Tari

Wireless Sensor Networks (WSNs) became omnipresent in our daily life. As a result, they have emerged as a fruitful research topic, because of their advantages, especially their low cost and easy deployment. However, these attractive merits imply that available resources, especially energy, in each sensor node have to be wisely used through different network dynamics. Beside other techniques, duty-cycling (DC) is the first widely used one to save energy in WSNs. However, due to the continuous changes, mainly in the energy availability, the nodes have to operate in a very low DC which is a required strategy in many applications in order to keep the network operational. This article presents a detailed survey that provides an interesting view of different DC schemes which are proposed to tackle the specific WSN challenges, and it also gives a novel classification of DC schemes that includes the most recent techniques. The last part aims to investigate the impact of the low DC on both the network and the application layer.

2020 ◽  
pp. 1557-1579
Author(s):  
Nassima Bouadem ◽  
Rahim Kacimi ◽  
Abdelkamel Tari

Wireless Sensor Networks (WSNs) became omnipresent in our daily life. As a result, they have emerged as a fruitful research topic, because of their advantages, especially their low cost and easy deployment. However, these attractive merits imply that available resources, especially energy, in each sensor node have to be wisely used through different network dynamics. Beside other techniques, duty-cycling (DC) is the first widely used one to save energy in WSNs. However, due to the continuous changes, mainly in the energy availability, the nodes have to operate in a very low DC which is a required strategy in many applications in order to keep the network operational. This article presents a detailed survey that provides an interesting view of different DC schemes which are proposed to tackle the specific WSN challenges, and it also gives a novel classification of DC schemes that includes the most recent techniques. The last part aims to investigate the impact of the low DC on both the network and the application layer.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Felicia Engmann ◽  
Ferdinand Apietu Katsriku ◽  
Jamal-Deen Abdulai ◽  
Kofi Sarpong Adu-Manu

Energy conservation is critical in the design of wireless sensor networks since it determines its lifetime. Reducing the frequency of transmission is one way of reducing the cost, but it must not tamper with the reliability of the data received at the sink. In this paper, duty cycling and data-driven approaches have been used together to influence the prediction approach used in reducing data transmission. While duty cycling ensures nodes that are inactive for longer periods to save energy, the data-driven approach ensures features of the data that are used in predicting the data that the network needs during such inactive periods. Using the grey series model, a modified rolling GM(1,1) is proposed to improve the prediction accuracy of the model. Simulations suggest a 150% energy savings while not compromising on the reliability of the data received.


2019 ◽  
Vol 9 (12) ◽  
pp. 2489 ◽  
Author(s):  
Fubao Zhang ◽  
Xianming Wang ◽  
Haonan Liu ◽  
Chunli Liu ◽  
Yong Wan ◽  
...  

Along with the development of industry and the improvement of people’s living standards, peoples’ demand on resources has greatly increased, causing energy crises and environmental pollution. In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally-friendly, and sustainable technology, and it has become a hot research topic. However, current photocatalytic technology cannot meet industrial requirements. The biggest challenge in the industrialization of photocatalyst technology is the development of an ideal photocatalyst, which should possess four features, including a high photocatalytic efficiency, a large specific surface area, a full utilization of sunlight, and recyclability. In this review, starting from the photocatalytic reaction mechanism and the preparation of the photocatalyst, we review the classification of current photocatalysts and the methods for improving photocatalytic performance; we also further discuss the potential industrial usage of photocatalytic technology. This review also aims to provide basic and comprehensive information on the industrialization of photocatalysis technology.


2020 ◽  
Author(s):  
Koppala Guravaiah ◽  
Arumugam Kavitha ◽  
Rengaraj Leela Velusamy

In recent years, wireless sensor networks have became the effective solutions for a wide range of IoT applications. The major task of this network is data collection, which is the process of sensing the environment, collecting relevant data, and sending them to the server or BS. In this chapter, classification of data collection protocols are presented with the help of different parameters such as network lifetime, energy, fault tolerance, and latency. To achieve these parameters, different techniques such as multi-hop, clustering, duty cycling, network coding, aggregation, sink mobility, directional antennas, and cross-layer solutions have been analyzed. The drawbacks of these techniques are discussed. Finally, the future work for routing protocols in wireless sensor networks is discussed.


2022 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Inês Vigo ◽  
Luis Coelho ◽  
Sara Reis

Background: Alzheimer’s disease (AD) has paramount importance due to its rising prevalence, the impact on the patient and society, and the related healthcare costs. However, current diagnostic techniques are not designed for frequent mass screening, delaying therapeutic intervention and worsening prognoses. To be able to detect AD at an early stage, ideally at a pre-clinical stage, speech analysis emerges as a simple low-cost non-invasive procedure. Objectives: In this work it is our objective to do a systematic review about speech-based detection and classification of Alzheimer’s Disease with the purpose of identifying the most effective algorithms and best practices. Methods: A systematic literature search was performed from Jan 2015 up to May 2020 using ScienceDirect, PubMed and DBLP. Articles were screened by title, abstract and full text as needed. A manual complementary search among the references of the included papers was also performed. Inclusion criteria and search strategies were defined a priori. Results: We were able: to identify the main resources that can support the development of decision support systems for AD, to list speech features that are correlated with the linguistic and acoustic footprint of the disease, to recognize the data models that can provide robust results and to observe the performance indicators that were reported. Discussion: A computational system with the adequate elements combination, based on the identified best-practices, can point to a whole new diagnostic approach, leading to better insights about AD symptoms and its disease patterns, creating conditions to promote a longer life span as well as an improvement in patient quality of life. The clinically relevant results that were identified can be used to establish a reference system and help to define research guidelines for future developments.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1464 ◽  
Author(s):  
Ziyuan Yang ◽  
Lu Leng ◽  
Byung-Gyu Kim

The color classification of stool medical images is commonly used to diagnose digestive system diseases, so it is important in clinical examination. In order to reduce laboratorians’ heavy burden, advanced digital image processing technologies and deep learning methods are employed for the automatic color classification of stool images in this paper. The region of interest (ROI) is segmented automatically and then classified with a shallow convolutional neural network (CNN) dubbed StoolNet. Thanks to its shallow structure and accurate segmentation, StoolNet can converge quickly. The sufficient experiments confirm the good performance of StoolNet and the impact of the different training sample numbers on StoolNet. The proposed method has several advantages, such as low cost, accurate automatic segmentation, and color classification. Therefore, it can be widely used in artificial intelligence (AI) healthcare.


2018 ◽  
Vol 7 (S1) ◽  
pp. 46-49
Author(s):  
C. Sudha . ◽  
D. Suresh . ◽  
A. Nagesh .

Wireless Sensor Networks (WSNs) within the zone time regulate to greater enticing and develop their manner into massive variance of exercise in distinctive domains. Elevation in wireless sensor network technology provide the affability of small and low cost sensor nodes with the adequacy of sensing, processing, computing the physical and surroundings circumstances. Due to inhibition in transmission range, processing and power resources it is considered necessary to design awesome and energy aware protocol to increase network lifetime. Routing strategies are developing to boom life cycle of sensor network and increase throughput performance. This paper gives, an analysis of various routing strategies used in wireless sensor networks in addition importance of cluster based routing, and varieties of cluster, type of cluster based routing are discussed. The observe concludes with the issues and the resent researchers on cluster based routing.


Author(s):  
Habib M. Ammari

In this chapter, we study duty-cycling to achieve both k-coverage and connectivity in highly dense deployed wireless sensor networks, where each location in a convex sensor field (or simply field) is covered by at least k active sensors while maintaining connectivity between all active sensors. Indeed, the limited battery power of the sensors and the difficulty of replacing and/or recharging batteries on the sensors in hostile environments require that the sensors be deployed with high density in order to extend the network lifetime. Also, the sensed data originated from source sensors (or simply sources) should be able to reach a central gathering node, called the sink, for further analysis and processing. Thus, network connectivity should be guaranteed so sources can be connected to the sink via multiple communication paths. Finally, wireless sensor networks suffer from scarce energy resources. A more practical deployment strategy requires that all the sensors be duty-cycled to save energy. With duty-cycling, sensors can be turned on or off according to some scheduling protocol, thus reducing the number of active sensors required for k-coverage and helping all sensors deplete their energy as slowly and uniformly as possible. We also extend our discussion to connected k-coverage with mobile sensors as well as connected k-coverage in a three-dimensional deployment area. Furthermore, we discuss the applicability of our protocols to heterogeneous wireless sensor networks.


Sign in / Sign up

Export Citation Format

Share Document