Simulation Tool for Cable Design

Author(s):  
Leonid Burstein

This chapter is an updated, enhanced, and expanded paper previously published in IJMMME. An attenuation-based mathematical model and computational tool for communication cable design is presented in the chapter. The relationship derived for the model creation connects attenuation with the following parameters of cable design and testing: copper wire, aluminum and insulation thicknesses, cable impedance, test frequency, and lay length. The expression found from numerous measurement data was used to simulate the Monte Carlo prediction of attenuation in the cable. To realize the simulations, a life script and regular MATLAB script programs were developed. The programs produce a special graphical user interface suitable for non-programmers, cable engineers, and technicians. Results of calculations obtained with the developed tool were verified by experiments and indicate that the tool can be used to design cables with optimal parameters.

Author(s):  
Leonid Burstein ◽  
Asher Bohbot

The original design model for defining the attenuation of manufactured cables was derived and fitted to experimental data. The model relationship connects attenuation with some parameters of cable design and testing: copper wire, aluminum, and insulation thicknesses, cable impedance, test frequency, and lay length. Defined expression was used for Monte-Carlo simulation of the cable attenuation prediction. With developed MATLAB program, a special graphical user interface was created. After assigning the desired parameters, this interface generates a plot with distribution of the attenuation values and required attenuation limit, and outputs defined mean attenuation, its 98% error, and numbers of values that get in and out of the limiting value. Data of calculations were verified by experiments and reveal good concurrence with the actual data. The realized fitting and simulation procedure, together with developed programs and created interface can be used as compact tool for designing cables with optimal parameters.


2014 ◽  
Vol 6 (1) ◽  
pp. 1006-1015
Author(s):  
Negin Shagholi ◽  
Hassan Ali ◽  
Mahdi Sadeghi ◽  
Arjang Shahvar ◽  
Hoda Darestani ◽  
...  

Medical linear accelerators, besides the clinically high energy electron and photon beams, produce other secondary particles such as neutrons which escalate the delivered dose. In this study the neutron dose at 10 and 18MV Elekta linac was obtained by using TLD600 and TLD700 as well as Monte Carlo simulation. For neutron dose assessment in 2020 cm2 field, TLDs were calibrated at first. Gamma calibration was performed with 10 and 18 MV linac and neutron calibration was done with 241Am-Be neutron source. For simulation, MCNPX code was used then calculated neutron dose equivalent was compared with measurement data. Neutron dose equivalent at 18 MV was measured by using TLDs on the phantom surface and depths of 1, 2, 3.3, 4, 5 and 6 cm. Neutron dose at depths of less than 3.3cm was zero and maximized at the depth of 4 cm (44.39 mSvGy-1), whereas calculation resulted  in the maximum of 2.32 mSvGy-1 at the same depth. Neutron dose at 10 MV was measured by using TLDs on the phantom surface and depths of 1, 2, 2.5, 3.3, 4 and 5 cm. No photoneutron dose was observed at depths of less than 3.3cm and the maximum was at 4cm equal to 5.44mSvGy-1, however, the calculated data showed the maximum of 0.077mSvGy-1 at the same depth. The comparison between measured photo neutron dose and calculated data along the beam axis in different depths, shows that the measurement data were much more than the calculated data, so it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry in linac central axis due to high photon flux, whereas MCNPX Monte Carlo techniques still remain a valuable tool for photonuclear dose studies.


1991 ◽  
Vol 24 (5) ◽  
pp. 85-96 ◽  
Author(s):  
Qingliang Zhao ◽  
Zijie Zhang

By means of simulated tests of a laboratory–scale oxidation pond model, the relationship between BOD5 and temperature fluctuation was researched. Mathematical modelling for the pond's performance and K1determination were systematically described. The calculation of T–K1–CeCe/Ci) was complex but the problem was solved by utilizing computer technique in the paper, and the mathematical model which could best simulate experiment data was developed. On the basis of experiment results,the concept of plug–ratio–coefficient is also presented. Finally the optimum model recommended here was verified with the field–scale pond data.


2015 ◽  
Vol 9 (1) ◽  
pp. 625-631
Author(s):  
Ma Xiaocheng ◽  
Zhang Haotian ◽  
Cheng Yiqing ◽  
Zhu Lina ◽  
Wu Dan

This paper introduces a mathematical model for Pulse-Width Modulated Amplifier for DC Servo Motor. The relationship between pulse-width modulated (PWM) signal and reference rotation speed is specified, and a general model of motor represented by transfer function is also put forward. When the input signal changes, the rotation speed of the servo motor will change accordingly. By changing zeros and poles, transient performance of this system is discussed in detail, and optimal ranges of the parameters is recommended at the end of discussion.


2021 ◽  
pp. 1-12
Author(s):  
Aparna Roy ◽  
T. V. Sekher

Abstract Use of body mass index (BMI) to assess the nutritional status of adolescents requires many resources, especially for country-level assessment. This study aimed to determine the relationship between BMI and mid upper arm circumference (MUAC) among adolescent males and females in India and to examine whether MUAC effectively represents the nutritional status of adolescents. The study utilized anthropometric measurement data collected by India’s National Family Health Survey-4 (2015–16). The weighted sample for analysis included 91,315 female and 14,893 male adolescents. The BMI and MUAC measurements showed a positive correlation in both female and male adolescents. Using BMI-for-age Z-score classifications, 12.7% of the adolescents were undernourished. Using MUAC (in cm) as per NACS (Nutrition Assessment, Counselling, and Support) guidelines and Mramba et al. (2017) classified 22.9% and 3.7% of the adolescents as undernourished respectively. Finally, using the MUAC-for-age Z-score classification, 98.4% of adolescents were determined to be normal and 1.7% undernourished. Sensitivity and specificity tests of the MUAC cut-offs, in comparison with BMI cut-offs, showed that all three MUAC cut-off classifications had high specificity (NACS cut-off: 81.3%; Mramba et al. cut-off (cm): 97.7%; Mramba et al. cut-off (Z-score): 99.1%). The NACS cut-off had moderately high sensitivity (52.2%) but the Mramba et al. cut-offs had low sensitivity (13.3% for the centimetre cut-off and 6.6% for the Z-score cut-off). Sensitivity and specificity tests proved the relationship between BMI and MUAC, and that MUAC represents adolescent nutritional status with considerable efficiency. With further research, it may be established that MUAC is a better and promising measure of adolescent nutrition, having the advantage of needing fewer resources for data collection. The MUAC has the potential to offer a simple and low-resource alternative to BMI to assess nutritional status among adolescents in poor countries.


1993 ◽  
Vol 119 (5) ◽  
pp. 1586-1599 ◽  
Author(s):  
P. Marek ◽  
M. Guštar ◽  
P. J. Tikalsky

Sign in / Sign up

Export Citation Format

Share Document