IoT Security Using Steganography

Author(s):  
Atrayee Majumder Ray ◽  
Anindita Sarkar ◽  
Ahmed J. Obaid ◽  
Saravanan Pandiaraj

Internet of things (IoT) is one of those emerging technologies, which are going to rule the world in the next few decades. Due to the advancement of low-cost computing systems and mobile technologies, these physical things are now capable of sharing and collecting data with minimal human interference. However, these devices are exposed to various security threats regarding privacy and data confidentiality as they are openly accessible to all in the network. Moreover, many IoT devices have low processing power and weak security level which could be the main targets for hackers. Lightweight cryptographic schemes are used to meet the security needs in IoT environment. Steganography is used as another security tool for IoT devices. This chapter is an attempt to analyze the various steganography techniques used to strengthen the security needs of IoT devices as per their applications. IoT security schemes using different steganography models and algorithms are outlined here with their relative advantages and disadvantages.

Author(s):  
Mamata Rath ◽  
Bibudhendu Pati

Adoption of Internet of Things (IoT) and Cloud of Things (CoT) in the current developing technology era are expected to be more and more invasive, making them important mechanism of the future Internet-based communication systems. Cloud of Things and Internet of Things (IoT) are two emerging as well as diversified advanced domains that are diversified in current technological scenario. Paradigm where Cloud and IoT are merged together is foreseen as disruptive and as an enabler of a large number of application scenarios. Due to the adoption of the Cloud and IoT paradigm a number of applications are gaining important technical attention. In the future, it is going to be more complicated a setup to handle security in technology. Information till now will severely get changed and it will be very tough to keep up with varying technology. Organisations will have to repeatedly switch over to new skill-based technology with respect to higher expenditure. Latest tools, methods and enough expertise are highly essential to control threats and vulnerability to computing systems. Keeping in view the integration of Cloud computing and IoT in the new domain of Cloud of things, the said article provides an up-to-date eminence of Cloud-based IoT applications and Cloud of Things with a focus on their security and application-oriented challenges. These challenges are then synthesized in detail to present a technical survey on various issues related to IoT security, concerns, adopted mechanisms and their positive security assurance using Cloud of Things.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2148 ◽  
Author(s):  
Mookyu Park ◽  
Haengrok Oh ◽  
Kyungho Lee

Internet-of-Things (IoT) is a technology that is extensively being used in various fields. Companies like Samsung, LG, and Apple are launching home appliances that use IoT as a part of their smart home business. Currently, Intelligent Things which combine artificial intelligence (AI) and IoT are being developed. Most of these devices are configured to collect and respond to human behavior (motion, voice, etc.) through built-in sensors. If IoT devices do not ensure high security, personal information could be leaked. This paper describes the IoT security threats that can cause information leakage from a hierarchical viewpoint of cyberspace. In addition, because these smart home-based IoT devices are closely related to human life, considering social damage is a problem. To overcome this, we propose a framework to measure the risk of IoT devices based on security scenarios that can occur in a smart home.


2021 ◽  
Author(s):  
Priyanka Gupta ◽  
Lokesh Yadav ◽  
Deepak Singh Tomar

The Internet of Things (IoT) connects billions of interconnected devices that can exchange information with each other with minimal user intervention. The goal of IoT to become accessible to anyone, anytime, and anywhere. IoT has engaged in multiple fields, including education, healthcare, businesses, and smart home. Security and privacy issues have been significant obstacles to the widespread adoption of IoT. IoT devices cannot be entirely secure from threats; detecting attacks in real-time is essential for securing devices. In the real-time communication domain and especially in IoT, security and protection are the major issues. The resource-constrained nature of IoT devices makes traditional security techniques difficult. In this paper, the research work carried out in IoT Intrusion Detection System is presented. The Machine learning methods are explored to provide an effective security solution for IoT Intrusion Detection systems. Then discussed the advantages and disadvantages of the selected methodology. Further, the datasets used in IoT security are also discussed. Finally, the examination of the open issues and directions for future trends are also provided.


Author(s):  
Bong-Gyeol Choi ◽  
EuiSeob Jeong ◽  
Sang-Woo Kim

As the number of Internet of Things (IoT) devices increases, services expand and illegal hacking and infringement methods become more sophisticated, an effective solution for blockchain technology is required as a fundamental solution to security threats. In this paper, we develop the security module of an IoT device based on blockchain technology that blocks hacking and information infringement and forms a multi-security blockchain system between the IoT device and the user device and we develop a user application. We contribute to addressing the security threats faced by IoT application services by developing a new method. In particular, we present some schemes for the development of a multi-security certification system based on blockchain for IoT security.


In a typical IoT network, a sensor connects to a controller using a wireless connection. Controllers collect data from sensors and sends the data for storage and analysis[1]. These controllers work with actuators that translate an electrical input to a physical action. The internet of things (IoT), have found application in different areas of human endeavor including healthcare, government, supply chain, cities, manufacturing, etc. and it is estimated that the number of connected devices will reach 50 billion by 2020[2] With the increasing number of devices comes an increase in the the varying number of security threats to the IoT network [3]. To contain these threats, a secure-by-design approach should be adopted as this will help the IoT devices to anticipate and neutralize the ever changing nature of the threats as against older systems where security was handled as it presents itself [2] This paper x-rays the security challenges in IoT networks and the application of machine learning (Supervised learning, Unsupervised learning and Reinforcement learning) in tackling the security challenges


Technologies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 50
Author(s):  
Anthony Overmars ◽  
Sitalakshmi Venkatraman

Recent growth in the Internet of Things (IoT) looks promising for realizing a smart environment of the future. However, concerns about the security of IoT devices are escalating as they are inherently constrained by limited resources, heterogeneity, and lack of standard security controls or protocols. Due to their inability to support state-of-the-art secure network protocols and defense mechanisms, standard security solutions are unsuitable for dynamic IoT environments that require large and smart IoT infrastructure deployments. At present, the IoT based smart environment deployments predominantly use cloud-centric approaches to enable continuous and on-demand data exchange that leads to further security and privacy risks. While standard security protocols, such as Virtual Private Networks (VPNs), have been explored for certain IoT environments recently, the implementation models reported have several variations and are not practically scalable for any dynamically scalable IoT deployment. This paper addresses current drawbacks in providing the required flexibility, interoperability, scalability, and low-cost practical viability of a secure IoT infrastructure. We propose an adaptive end-to-end security model that supports the defense requirements for a scalable IoT infrastructure. With low-cost embedded controllers, such as the Raspberry Pi, allowing for the convergence of more sophisticated networking protocols to be embedded at the IoT monitoring interface, we propose a scalable IoT security model integrating both the IoT devices and the controller as one embedded device. Our approach is unique, with a focus on the integration of a security protocol at the embedded interface. In addition, we demonstrate a prototype implementation of our IoT security model for a smart water monitoring system. We believe that our modest first step would instill future research interests in this direction.


2019 ◽  
Vol 20 (3) ◽  
pp. 457-484 ◽  
Author(s):  
Syed Rameem Zahra ◽  
Mohammad Ahsan Chishti

The purpose of this paper is to chalk out the criticality of the most important pillar of Internet of Things (IoT),i.e., Security and Privacy (S&P). IoT has seen its journey from implausible and impossible to sustainable and tenable. Its rateof expansion into various grounds from agriculture to sports; personal health to intelligent trac detection; waste managementto smart homes is astonishing, dramatic and unforeseen. With such vast adaptability and functionality, its security remains thebiggest concern because in contrast to the traditional networks, IoT faces huge vulnerabilities some of which are inherent and othersexplicit. The existing security solutions cannot be implemented in IoT because of its unique characteristics. Therefore, there is adire need to develop novel security procedures betting IoT. This paper spots the features that are peculiar to IoT and concurrentlyanalyzes the security threats and challenges they pose. This work also provides a glimpse of the major IoT implementations withtheir particular security requirements and challenges. Moreover, this paper critically evaluates the proposed countermeasures tosecurity attacks on dierent features and why they cannot be used in IoT environments. Also, it is found that most of the securitysolutions used in IoT devices are inspired from Wireless Sensor Networks (WSN) but the striking dierences among the two makethem inadequate in IoT. The security requirements and challenges peculiar to various IoT services are also identied. To assist theresearchers in remaining up-to-date, we for the rst time have thoroughly expressed some of the most famous and practical attacksfaced across the world in the recent past, how much damage they caused, how much nancial losses were faced, etc.


Author(s):  
Anjum Nazir Qureshi Sheikh ◽  
Asha Ambhaikar ◽  
Sunil Kumar

The internet of things is a versatile technology that helps to connect devices with other devices or humans in any part of the world at any time. Some of the researchers claim that the number of IoT devices around the world will surpass the total population on the earth after a few years. The technology has made life easier, but these comforts are backed up with a lot of security threats. Wireless medium for communication, large amount of data, and device constraints of the IoT devices are some of the factors that increase their vulnerability to security threats. This chapter provides information about the attacks at different layers of IoT architecture. It also mentions the benefits of technologies like blockchain and machine learning that can help to solve the security issues of IoT.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3380 ◽  
Author(s):  
Tiberiu-Marian Georgescu ◽  
Bogdan Iancu ◽  
Madalina Zurini

The aim of this paper was to enhance the process of diagnosing and detecting possible vulnerabilities within an Internet of Things (IoT) system by using a named entity recognition (NER)-based solution. In both research and practice, security system management experts rely on a large variety of heterogeneous security data sources, which are usually available in the form of natural language. This is challenging as the process is very time consuming and it is difficult to stay up to date with the constant findings in the areas of security threats, vulnerabilities, attacks, countermeasures, and risks. The proposed system is conceived as a semantic indexing solution of existing vulnerabilities and serves as an information tool for security management experts. By integrating the proposed system, the users can easily discover the potential vulnerabilities of their IoT devices. The proposed solution integrates ontologies and NER techniques in order to obtain a high rate of automation with the scope of reaching a self-maintained and up-to-date system in terms of vulnerabilities and common exposures knowledge. To achieve this, a total of 312 CVEs (common vulnerabilities and exposures) specific to the IoT field were identified. CVEs are arguably one of the most important cybersecurity resources nowadays, containing information about the latest discovered vulnerabilities. This set is further used as data corpus for an NER model designed to identify the main entities and relations that are relevant to IoT security. The goal is to automatically monitor cybersecurity information relevant to IoT, and filter and present it in an organized and structured framework based on users’ needs. The taxonomies specific to IoT security are implemented via a domain ontology, which is later used to process natural language. Relevant tokens are marked as entities and the relations between them identified. The text analysis solution is connected to a gateway which scans the environment and identifies the main IoT devices and communication technologies. The strength of the approach proposed within this research is that the designed semantic gateway is using context-aware searches in the modeled IoT security database and can identify possible vulnerabilities before they can be exploited.


IOT is wirelessly connecting things to the internet using sensors, RFID’s and remotely accessing and managing them over our phone or through our voice. IOT uses various communication protocols such as Zigbee, 6LowPan, Bluetooth and has bi directional communication for exchange of information. The database for IOT is cloud which is also vulnerable to security threats. The increasing amount of popularity of IoT and its pervasive usage has made it more recurrent to prominent cyber-attacks such as botnet attack, IoT ransom ware, DOS attack, RFID hack. The challenges faced by IoT are to stop hackers from stealing data, having unattended access to the device and performing malicious activities. There are many techniques which can be used to secure IoT devices such as using a secure encrypted Wi-Fi network, using digital signature for authenticity, updating to latest patches, installing Intrusion Detection System. We’ll also be assessing various IoT devices and threats associated with them in real time environment and the level of harm these threats can cause to the device if they are not properly mitigated or eradicated. In this paper we’ll also be addressing different types of risks associated with different IOT devices and approaches to solve the security and privacy issues


Sign in / Sign up

Export Citation Format

Share Document