Implications of Cybersecurity Breaches in LPWANs

Author(s):  
Åke Axeland ◽  
Henrik Hagfeldt ◽  
Magnus Carlsson ◽  
Lina Lagerquist Sergel ◽  
Ismail Butun

With the contrast of limited performance and big responsibility of IoT devices, potential security breaches can have serious impacts in means of safety and privacy. Potential consequences of attacks on IoT devices could be leakage of individuals daily habits and political decisions being influenced. While the consequences might not be avoidable in their entirety, adequate knowledge is a fundamental part of realizing the importance of IoT security and during the assessment of damages following a breach. This chapter will focus on two low-powered wide area network (LPWAN) technologies, narrow-band iot (NB-IoT) and long-range wide area network (LoRaWAN). Further, three use cases will be considered—healthcare, smart cities, and industry—which all to some degree rely on IoT devices. It is shown that with enough knowledge of possible attacks and their corresponding implications, more secure IoT systems can be developed.

Author(s):  
Domenico Garlisi ◽  
Alessio Martino ◽  
Jad Zouwayhed ◽  
Reza Pourrahim ◽  
Francesca Cuomo

AbstractThe interest in the Internet of Things (IoT) is increasing both as for research and market perspectives. Worldwide, we are witnessing the deployment of several IoT networks for different applications, spanning from home automation to smart cities. The majority of these IoT deployments were quickly set up with the aim of providing connectivity without deeply engineering the infrastructure to optimize the network efficiency and scalability. The interest is now moving towards the analysis of the behavior of such systems in order to characterize and improve their functionality. In these IoT systems, many data related to device and human interactions are stored in databases, as well as IoT information related to the network level (wireless or wired) is gathered by the network operators. In this paper, we provide a systematic approach to process network data gathered from a wide area IoT wireless platform based on LoRaWAN (Long Range Wide Area Network). Our study can be used for profiling IoT devices, in order to group them according to their characteristics, as well as detecting network anomalies. Specifically, we use the k-means algorithm to group LoRaWAN packets according to their radio and network behavior. We tested our approach on a real LoRaWAN network where the entire captured traffic is stored in a proprietary database. Quite important is the fact that LoRaWAN captures, via the wireless interface, packets of multiple operators. Indeed our analysis was performed on 997, 183 packets with 2169 devices involved and only a subset of them were known by the considered operator, meaning that an operator cannot control the whole behavior of the system but on the contrary has to observe it. We were able to analyze clusters’ contents, revealing results both in line with the current network behavior and alerts on malfunctioning devices, remarking the reliability of the proposed approach.


BWK ENERGIE. ◽  
2019 ◽  
Vol 71 (01-02) ◽  
pp. 24-25
Author(s):  
Alexander Sommer

IOT | Das Internet der Dinge (IoT) ist bei Stadtwerken zum Trendthema avanciert. Die items GmbH aus Münster, Full-Service-IT-Dienstleister für die Versorgungsbranche, baut aktuell ein interdisziplinäres IoT-Team auf, um Stadtwerke beim Aufbau und Betrieb von Infrastrukturen im Bereich der Long-Range-Wide-Area-Network (LoRaWAN)-Technologie unterstützen zu können. Im Gespräch mit BWK erläutert Alexander Sommer, Leiter Innovation & Transformation, die Strategie von items.


Author(s):  
Deniz TAŞKIN ◽  
Selçuk YAZAR

The Internet of Things (IoT) applications has been developing greatly in recent years to solve communication problems, especially in rural areas. Within the IoT, the context-awareness paradigm, especially in precision agricultural practices, has come to a state of the planning of production time. As smart cities approach, the smart environment approach also increases its place in IoT applications and has dominated research in recent years in literature. In this study, soil and environmental information were collected in 17 km diameter in rural area with developed Long Range (LoRa) based context-aware platform. With the developed sensor and actuator control unit, soil moisture at 5 cm and 30 cm depth and soil surface temperature information were collected and the communication performance was investigated. During the study, the performance measurements of the developed Serial Peripheral Interface (SPI) enabled Long Range Wide Area Network (LoRaWAN) gateway were also performed.


2017 ◽  
Vol 2 (3) ◽  
pp. 112-119 ◽  
Author(s):  
Om-Kolsoom Shahryari ◽  
Amjad Anvari-Moghaddam ◽  
Shadi Shahryari

The smart grid, as a communication network, allows numerous connected devices such as sensors, relays and actuators to interact and cooperate with each other. An Internet-based solution for electricity that provides bidirectional flow of information and power is internet of energy (IoE) which is an extension of smart grid concept. A large number of connected devices and the huge amount of data generated by IoE and issues related to data transmission, process and storage, force IoE to be integrated by cloud computing. Furthermore, in order to enhance the performance and reduce the volume of transmitted data and process information in an acceptable time, fog computing is suggested as a layer between IoE layer and cloud layer. This layer is used as a local processing level that leads to reduction in data transmissions to the cloud. So, it can save energy consumption used by IoE devices to transmit data into cloud because of a long range, low power, wide area and low bit rate wireless telecommunication system which is called LoRaWAN. All devices in fog domain are connected by long range wide area network (LoRa) into a smart gateway.  The gateway which bridges fog domain and cloud, is introduced for scheduling devices/appliances by creating a priority queue which can perform demand side management dynamically. The queue is affected by not only the consumer importance but also the consumer policies and the status of energy resources.


2019 ◽  
Vol 5 (2) ◽  
pp. 83-92 ◽  
Author(s):  
Eko Didik Widianto ◽  
Al Arthur Faizal ◽  
Dania Eridani ◽  
Richard Dwi Olympus Augustinus ◽  
Michael SM Pakpahan

Standar terbuka pada sistem komunikasi LoRa (Long Range) menyebabkan perbedaan cara implementasi dalam setiap penggunaannya. LoRaWAN (Long Range Wide Area Network) sebagai protokol bawaan LoRa masih mempunyai beberapa kekurangan yang menyebabkannya kurang efektif untuk diimplementasikan pada sistem tertentu. Penelitian ini mengembangkan protokol SLP (Simple LoRa Protocol) sebagai alternatif protokol komunikasi dan arsitektur jaringan yang didesain berdasarkan kekurangan yang dimiliki oleh LoRaWAN. Protokol ini mendefinisikan format data dan proses komunikasi antara client dan gateway dalam mode setup untuk pendaftaran node secara mandiri dan polling untuk transaksi data. Proses setup mampu mengenali node dengan konfigurasi sensor beragam dan dapat mengirmkan data dari node ke gateway dengan baik. Hasil pengujian menunjukkan bahwa SLP menghasilkan peningkatan performa QoS dalam throughput dan packet loss dari LoRaWAN menggunakan modulasi yang sama.


BWK ENERGIE. ◽  
2019 ◽  
Vol 71 (05) ◽  
pp. 20-21

IOT-NETZE | Die Minol Zenner Connect GmbH bietet Stadtwerken und Industriebetrieben Unterstützung beim Long-Range-Wide-Area-Network (LoRaWAN)-Aufbau an. Das neue Unternehmen hat sich ein ambitioniertes Ziel gesteckt: Lokale Infrastrukturen sollen deutschlandweit zu einem möglichst flächendeckenden Funknetz verknüpft werden.


Author(s):  
Olof Magnusson ◽  
Rikard Teodorsson ◽  
Joakim Wennerberg ◽  
Stig Arne Knoph

LoRaWAN (long-range wide-area network) is an emerging technology for the connection of internet of things (IoT) devices to the internet and can as such be an important part of decision support systems. In this technology, IoT devices are connected to the internet through gateways by using long-range radio signals. However, because LoRaWAN is an open network, anyone has the ability to connect an end device or set up a gateway. Thus, it is important that gateways are designed in such a way that their ability to be used maliciously is limited. This chapter covers relevant attacks against gateways and potential countermeasures against them. A number of different attacks were found in literature, including radio jamming, eavesdropping, replay attacks, and attacks against the implementation of what is called beacons in LoRaWAN. Countermeasures against these attacks are discussed, and a suggestion to improve the security of LoRaWAN is also included.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4273
Author(s):  
Jeferson Rodrigues Cotrim ◽  
João Henrique Kleinschmidt

The growth of the Internet of Things (IoT) led to the deployment of many applications that use wireless networks, like smart cities and smart agriculture. Low Power Wide Area Networks (LPWANs) meet many requirements of IoT, such as energy efficiency, low cost, large coverage area, and large-scale deployment. Long Range Wide Area Network (LoRaWAN) networks are one of the most studied and implemented LPWAN technologies, due to the facility to build private networks with an open standard. Typical LoRaWAN networks are single-hop in a star topology, composed of end-devices that transmit data directly to gateways. Recently, several studies proposed multihop LoRaWAN networks, thus forming wireless mesh networks. This article provides a review of the state-of-the-art multihop proposals for LoRaWAN. In addition, we carried out a comparative analysis and classification, considering technical characteristics, intermediate devices function, and network topologies. This paper also discusses open issues and future directions to realize the full potential of multihop networking. We hope to encourage other researchers to work on improving the performance of LoRaWAN mesh networks, with more theoretical and simulation analysis, as well as practical deployments.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1008 ◽  
Author(s):  
Seungku Kim ◽  
Heonkook Lee ◽  
Sungho Jeon

When the low power wide area network (LPWAN) was developed for the internet of things (IoT), it attracted significant attention. LoRa, which is one of the LPWAN technologies, provides low-power and long-range wireless communication using a frequency band under 1 GHz. A long-range wide area network (LoRaWAN) provides a simple star topology network that is not scalable; it supports multi-data rates by adjusting the spreading factor, code rate, and bandwidth. This paper proposes an adaptive spreading factor selection scheme for corresponding spreading factors (SFs) between a transmitter and receiver. The scheme enables the maximum throughput and minimum network cost, using cheap single channel LoRa modules. It provides iterative SF inspection and an SF selection algorithm that allows each link to communicate at independent data rates. We implemented a multi-hop LoRa network and evaluated the performance of experiments in various network topologies. The adaptive spreading factor selection (ASFS) scheme showed outstanding end-to-end throughput, peaking at three times the performance of standalone modems. We expect the ASFS scheme will be a suitable technology for applications requiring high throughput on a multi-hop network.


Sign in / Sign up

Export Citation Format

Share Document