Fatigue Characterization and Fractographic Analysis of Aluminium 6063 Alloy

2022 ◽  
pp. 176-194
Author(s):  
Sreearravind M. ◽  
Ramesh Kumar S. ◽  
Ahilan C.

Aluminium and its alloy are widely employed in various automobile and aircraft areas because of their unique specific strength and formability. Al alloys that have been employed in aerospace structural components will undergo dynamic loading, which leads to fatigue due to mechanical stress and thermal conditions. Considering studies toward the low cycle fatigue behaviour of Al alloys are significantly narrowed, this chapter sighted to the analysis of fatigue behaviour of Al 6063 alloy at the various total strain amplitude (TSA) of 0.4% and 0.8%, which performed through the low cycle fatigue testing machine at the frequency rate of 0.2 Hz. The test results show that for 0.4% TSA, the number of cycles to failure (N) is 1786, whereas as the TSA increases, N got reduced. For 0.8% TSA, the cycle to failure is 291 and samples undergone cyclic softening during the test. The rate of cyclic plastic strain raised up with the increase in the TSA. Crack propagation was observed along with the quasi-cleavage fracture for 0.4% TSA and cleavage fracture for 0.8% TSA.

Author(s):  
Takamoto Itoh ◽  
Masao Sakane ◽  
Takahiro Morishita ◽  
Hiroshi Nakamura ◽  
Masahiro Takanashi

This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of ?=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. ? is a principal stress ratio and is defined as ?=sigmaII/sigmaI, where sigmaI and sigmaII are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at ?=0 is a uniaxial loading test and that at ?=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing ? induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.


2018 ◽  
Vol 157 ◽  
pp. 05013 ◽  
Author(s):  
Peter Kopas ◽  
Milan Sága ◽  
František Nový ◽  
Bohuš Leitner

The article presents the results of research on low cycle fatigue strength of laser welded joints vs. non-welded material of high-strength steel DOMEX 700 MC. The tests were performed under load controlled using the total strain amplitude ɛac. The operating principle of the special electro-mechanic fatigue testing equipment with a suitable clamping system was working on 35 Hz frequency. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. Studies have shown differences in the fatigue life of original specimens and laser welded joints analysed, where laser welded joints showed lower fatigue resistance. In this article a numerical analysis of stresses generated in bending fatigue specimens has been performed employing the commercially available FEM-program ADINA.


2017 ◽  
Vol 734 ◽  
pp. 194-201 ◽  
Author(s):  
Yutaka Konishi ◽  
Takamoto Itoh ◽  
Masao Sakane ◽  
Fumio Ogawa ◽  
Hideyuki Kanayama

This paper investigates the fatigue results in low cycle fatigue region obtained from a miniaturized specimen having a 6mm gage length, 3mm diameter and 55mm total length. Fatigue tests were performed for two type lead-free solders using horizontal-type electrical servo hydraulic push-pull fatigue testing machine. Materials employed were Sn-3.0Ag-0.5Cu and Sn-5Sb. The results from Sn-3.0Ag-0.5Cu were compared with those obtained using a bulk specimen in a previous study. Relationship between strain range and number of cycles to failure of the small-sized specimen agreed with those of the bulk specimens. The testing techniques are applicable to Sn-5Sb following the Manson-Coffin law. These results confirm that the testing technique proposed here, using small-sized specimen, is suitable to get fruitful fatigue data for lead-free solder compounds.


Author(s):  
Patricia Pappa ◽  
George E. Varelis ◽  
Spyros A. Karamanos ◽  
Arnold M. Gresnigt

In this paper the low cycle fatigue behaviour of steel elbows under strong cyclic loading conditions (in-plane and out-of-plane) is examined. The investigation is conducted through advanced finite element analysis tools, supported by real-scale test data for in-plane bending. The numerical results are successfully compared with the experimental measurements. In addition, a parametric study is conducted, which is aimed at investigating the effects of the diameter-to-thickness ratio on the low-cycle fatigue of elbows, focusing on the stress and strain variations. Strain gauge measurements are compared with finite element models. Upon calculation of local strain variation at the critical location, the number of cycles to fracture can be estimated.


Author(s):  
Catalin Teodoriu

Fatigue is the most common known problem of drill pipes, since the combination of make-ups performed to connect the pipes and all the external loads, together with the threaded geometry of the connections, will stimulate the appearance of high stress points, cracks and finally promoting considerable economic losses. When threaded connections are used to connect the casing string, the fatigue resistance of the connection will affect the whole integrity of the string, and thus, in most cases, it is lower as the casing body. Generally, fatigue is classified as low-cycle fatigue and multi- or high-cycle fatigue. For Oil Country Tubular Goods (OCTG), a typical high cycle fatigue is represented by drill pipe fatigue in deviated wells. Unlike drill pipe, the casing may be exposed both to low-cycle as well as to high-cycle fatigue. Low-cycle fatigue is a common type of failure when the applied loads induce high stresses in the metallic material. The number of cycles may vary from as low as 10 up to 100. High-cycle fatigue requires a large number of cycles to failure. In order to avoid catastrophic failures, high-cycle fatigue resistance is usually considered to be sufficient if the number of cycles is above 106. The oil business has focused excessively on testing drilling risers and drill pipes under fatigue loads, but when it comes to casing and tubing the experimental approach may require different solutions. Drilling with casing opened the intensive testing of casing connections against fatigue resistance. Moreover, recent papers have shown intensive work on redesigning connections to withstand fatigue. New applications like rotating while running require a rethinking of testing strategy of Casing and Tubing. The following paper focuses on answering the question whether we test enough. The first part compares existing testing facilities, followed by an intensive discussion about the true loads of a casing or tubing connection. Using public testing data, the second part of the paper tries to identify how far the results provided by various types of testing machines can be compared with each other. For example, we found that low cycle fatigue results may not fully reflect the predictions based on extrapolations of high cycle fatigue results.


2011 ◽  
Vol 291-294 ◽  
pp. 1106-1109 ◽  
Author(s):  
Grzegorz Golański ◽  
Krzysztof Werner ◽  
Stanisław Mroziński

The report treats of the low cycle fatigue (LCF) behaviour of GX12CrMoVNbN9-1 (GP91) cast steel after heat treatment (1040°C/12h/oil + 760°C/12h/air + 750°C/8h/furnace). Fatigue tests were carried out at room temperature for five levels of the controlled total strain amplitude εac = 0.25, 0.30, 0.35, 0.50 and 0.60 %. The research performed within the scope of LCF has shown in general that the investigated cast steel was subject to strong cyclic weakening, revealing no stabilization period at the same time. At the final stage of fatigue there was quick weakening of the material which proceeded till its destruction. The growth of amplitude εac resulted in reducing the number of cycles till the destruction stage.


2012 ◽  
Vol 591-593 ◽  
pp. 993-996
Author(s):  
Qing Zhu Sun ◽  
Hai Bo Wang ◽  
Yong Chang Zhu

In this paper, the microstructure and properties of AZ91D-xCa-ySr were studied by adding alloying elements. The mechanical properties were investigated by WDT-10 micro-electric universal testing machine and WD-T low cycle fatigue testing machine. The OLYMPUS-GX71 Optical electronic microscope, XRD and SEM were employed to investigate the microstructure of AZ91D. The results showed that the grains were refined by adding Ca,Sr,Gd and Y. Low cycle fatigue (LCF) behavior of AZ91D-0.4Ca-0.3Sr was improved obviously by adding 3.0%Gd and 3.0%Y into material, the tensile strengthen was up to 299Mpa, the elongation was 0.78%.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3136
Author(s):  
Sidharth Rajan ◽  
Priti Wanjara ◽  
Javad Gholipour ◽  
Abu Syed Kabir

The use of joints fabricated from dissimilar titanium alloys allows the design of structures with local properties tailored to different service requirements. To develop welded structures for aerospace applications, particularly under critical loading, an understanding of the fatigue behavior is crucial, but remains limited, especially for solid-state technologies such as linear friction welding (LFW). This paper presents the fatigue behavior of dissimilar titanium alloys, Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–4Zr–2Mo–0.1Si (Ti6242), joined by LFW with the aim of characterizing the stress versus number of cycles to failure (S-N) curves in both the low- and high-cycle fatigue regimes. Prior to fatigue testing, metallurgical characterization of the dissimilar alloy welds indicated softening in the heat-affected zone due to the retention of metastable β, and the typical practice of stress relief annealing (SRA) for alleviating the residual stresses was effective also in transforming the metastable β to equilibrated levels of α + β phases and recovering the hardness. Thus, the dissimilar alloy joints were fatigue-tested in the SRA (750 °C for 2 h) condition and their low- and high-cycle fatigue behaviors were compared to those of the Ti64 and Ti6242 base metals (BMs). The low-cycle fatigue (LCF) behavior of the dissimilar Ti6242–Ti64 linear friction welds was characterized by relatively high maximum stress values (~ 900 to 1100 MPa) and, in the high-cycle fatigue (HCF) regime, the fatigue limit of 450 MPa at 107 cycles was just slightly higher than that of the Ti6242 BM (434 MPa) and the Ti64 BM (445 MPa). Fatigue failure of the dissimilar titanium alloy welds in the low-cycle and high-cycle regimes occurred, respectively, on the Ti64 and Ti6242 sides, roughly 3 ± 1 mm away from the weld center, and the transitioning was reasoned based on the microstructural characteristics of the BMs.


1973 ◽  
Vol 95 (3) ◽  
pp. 157-160 ◽  
Author(s):  
G. Lunsford ◽  
A. W. Pense ◽  
P. S. Venkatesan ◽  
M. J. McIntosh

To investigate the low cycle fatigue properties of an 18 percent nickel maraging steel, a high pressure fatigue testing machine including the high pressure chamber and associated hydraulic controls was designed and developed to apply simultaneously to the specimen (1) constant fluid pressure up to 100,000 psi, (2) mean uniaxial tensile or compressive stress, and (3) alternating push-pull load at a selected rate. Using this machine, notched and unnotched specimens were tested. Results indicated a definite increase in fatigue life of the material in the high pressure environment.


Sign in / Sign up

Export Citation Format

Share Document