Secure and Flexible Key Protected Identity Framework for Mobile Devices

2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

Mobile or IOT based applications are emerging rapidly across the globe and there is a massive digital transformation happening within each country. It is a need of an hour to improve and protect digital identity during online transactions through handheld devices. This paper proposes a Mobile ID solution based on Mobile-originated PKI without the need for the actual identity card or a card reader. The solution proposed focuses on security, privacy, and usability using open standards which will protect Personally Identifiable Information (PII) over handheld devices. The proposed mobile ID solution has better cost-efficacy and privacy than today’s scenario. It also explicates the Mobile ID solution with established secure identity among users, authorities, other organizations of public, and private sectors.

Author(s):  
K. Ravikumar ◽  
R. Geetha

Quick Response (QR) codes are versatile. a chunk of long trilingual text, a connected URL, an automatic SMS message, an identity card or simply regarding any data is embedded into the two-dimensional barcode. as well as moderate equipped mobile devices, QR Codes will connect the users to the data quickly and simply. The operations to retrieve or store QR codes are unbelievably easy and fast, and with mobile devices, build them the best academic tools for teaching and learning. QR codes are all over and most of the people have mobile phones equipped with QR code readers. though QR codes existed for over fifteen years, there arent such a lot of analysis applications during this space.


HortScience ◽  
2016 ◽  
Vol 51 (9) ◽  
pp. 1176-1183 ◽  
Author(s):  
Chase M. Straw ◽  
Rebecca A. Grubbs ◽  
Kevin A. Tucker ◽  
Gerald M. Henry

Research compared handheld and mobile data acquisitions of soil moisture [volumetric water content (VWC)], soil compaction (penetration resistance), and turfgrass vigor [normalized difference vegetative index (NDVI)] of four natural turfgrass sports fields using two sampling grid sizes (4.8 × 4.8 m and 4.8 × 9.6 m). Differences between the two sampling grid sizes were minimal, indicating that sampling with handheld devices using a 4.8 × 9.6 m grid (120–130 samples) would achieve results similar to the smaller grid size. Central tendencies and data distributions varied among the handheld and mobile devices. Moderate to strong correlation coefficients were observed for VWC and NDVI; however, weak to moderate correlation coefficients were observed for penetration resistance at three of the four locations. Kriged maps of VWC and NDVI displayed similar patterns of variability between handheld and mobile devices, but at different magnitudes. Spatial maps of penetration resistance were inconsistent due to device design and user reliability. Consequently, mobile devices may provide the most reliable results for penetration resistance of natural turfgrass sports fields.


Author(s):  
Ning Yu ◽  
Kien A. Hua ◽  
Danzhou Liu

During the last decade, high quality (i.e. over 1 megapixel) built-in cameras have become standard features of handheld devices. Users can take high-resolution pictures and share with friends via the internet. At the same time, the demand of multimedia information retrieval using those pictures on mobile devices has become an urgent problem to solve, and therefore attracts attention. A relevance feedback information retrieval process includes several rounds of query refinement, which incurs exchange of images between the mobile device and the server. With limited wireless bandwidth, this process can incur substantial delay, making the system unfriendly to use. This issue is addressed by considering a Client-side Relevance Feedback (CRF) technique. In the CRF system, Relevance Feedback (RF) is done on client side along. Mobile devices’ battery power is saved from exchanging images between server and client and system response is instantaneous, which significantly enhances system usability. Furthermore, because the server is not involved in RF processing, it is able to support more users simultaneously. The experiment indicates that the system outperforms the traditional server-client relevance feedback systems on the aspects of system response time, mobile battery power saving, and retrieval result.


Author(s):  
Lei Chen ◽  
Shaoen Wu ◽  
Yiming Ji ◽  
Ming Yang

Mobile and handheld devices are becoming an integral part of people’s work, life and entertainment. These lightweight pocket-sized devices offer great mobility, acceptable computation power and friendly user interfaces. As people are making business transactions and managing their online bank accounts via handheld devices, they are concerned with the security level that mobile devices and systems provide. In this chapter we will discuss whether these devices, equipped with very limited computation power compared to full-sized computers, can make equivalent security services available to users. We focus on the security designs and technologies of hardware, operating systems and applications for mobile and handheld devices.


Author(s):  
Mark Bilandzic ◽  
Marcus Foth

The increasing ubiquity of location and context-aware mobile devices and applications, geographic information systems (GIS) and sophisticated 3D representations of the physical world accessible by lay users is enabling more people to use and manipulate information relevant to their current surroundings (Scharl & Tochtermann, 2007). The relationship between users, their current geographic location and their devices are summarised by the term “mobile spatial interaction” (MSI), and stands for the emerging opportunities and affordances that location sensitive and Internet capable devices provide to its users. The first major academic event which coined the term in its current usage was a workshop on MSI (see http://msi.ftw.at/) at the CHI 2007 (Fröhlich et al., 2007). Mobile spatial interaction is grounded in a number of technologies that recently started to converge. First, the development of mobile networks and mobile Internet technologies enables people to request and exchange specific information from anywhere at anytime. Using their handheld devices people can, for example, check the latest news, request recent stock exchange values or communicate via mobile instant messaging. The second enabler is global positioning technology. Mobile devices with integrated Global Positioning System (GPS) receivers—soon to be joined by the Russian Global Navigation Satellite System (GLONASS) and the European Galileo system—are aware of their current latitude and longitude coordinates and can use this data as value added information for context-aware services, that is, mobile applications that refer to information relevant to the current location of the user. A possible use scenario for such an information request would be, for example, “find all clubs and pubs in a radius of 500 meters from my current position.” The focus of this work is to enrich the opportunities given by such location aware services with selected Web 2.0 design paradigms (Beer & Burrows, 2007; Kolbitsch & Maurer, 2006) toward mobile social networking services that are bound to specific physical places. User participation, folksonomy and geotagging are three design methods that have become popular in Web 2.0 community-platforms and proven to be effective information management tools for various domains (Casey & Savastinuk, 2007; Courtney, 2007; Macgregor & McCulloch, 2006). Applying such a design approach for a mobile information system creates a new experience of collaboration between mobile users, a step toward what Jaokar refers to as the Mobile Web 2.0 (Jaokar & Fish, 2006), that is, a chance for mediated social navigation in physical spaces.


Author(s):  
Tansif Ur Rehman

The practice of protecting computers, websites, mobile devices, electronic services, networks, and digital data from malicious attacks is known as cybersecurity. Since political, military, private, financial, and medical institutions collect, process, and maintain massive volumes of data on computers and other devices, cybersecurity is critical. Sensitive data, such as intellectual property, financial data, personal records, or other forms of data, can make up a large amount of the data. Improper access or disclosure to that data can have profound implications. Technology has undoubtedly made a significant change in every aspect of life in Pakistan, whether it is a financial or non-financial sphere. Technology's usage is thoroughly utilized by banks worldwide. They have started adopting it frequently because of the immense need to achieve goals and satisfy customer needs more efficiently. Almost all leading banks have now provided e-commerce facilities. Over time, more and more services and facilities are offered to bank customers conveniently via e-commerce products.


2011 ◽  
pp. 1930-1939
Author(s):  
Willy Susilo

Access to mobile data and messages is essential in healthcare environment as patients and healthcare providers are mobile. This is inline with the need of ubiquitous computing in everyday life. Mobile and wireless devices can assist in ensuring patient’s safety by providing easy availability of the data at the point of care. Portability and accessibility of these devices enhances use of them in healthcare environment. However, data integrity and confidentiality of information in them need to be ensured to provide safe, effective and efficient healthcare. Mobile healthcare involves conducting healthcare related activities through using mobile devices such as a smart phone, Personal digital assistant (PDA), wireless enabled computer, iPod and so on. Mobile computing is suitable for healthcare as healthcare providers are mobile. These would be suitable for conducting patient’s healthcare activities in emergencies, ward rounds, homecare, chronic disease management, conducting clinical trials, and so on. There are various projects using mobile devices to enhance patient’s care. With the advancement of medical informatics, telemedicine and information technology, mobile data devices play an enormous role in healthcare system. In this chapter, we outline the need of mobile devices in healthcare, usage of these devices, underlying technology and applications, importance of security of these devices, securing mobile data communication in healthcare through different security models and case examples of applications that we have developed, in particular (1) iPathology tool on iPod, (2) securing healthcare information using Pocket PC 2003, and (3) securing information on handheld devices. There were several incidents in the past due to the insecurity of mobile devices that can leak information to anyone who does not have access to the information. In this chapter, we will illustrate several techniques that we have developed to protect these malicious activities and how these are applicable for securing mobile data computing in healthcare.


Author(s):  
Rafael Marin-Campos ◽  
Josep Dalmau ◽  
Albert Compte ◽  
Daniel Linares

Abstract Psychophysical tests are commonly carried out using software applications running on desktop or laptop computers, but running the software on mobile handheld devices such as smartphones or tablets could have advantages in some situations. Here, we present StimuliApp, an open-source application in which the user can create psychophysical tests on the iPad and the iPhone by means of a system of menus. A wide number of templates for creating stimuli are available including patches, gradients, gratings, checkerboards, random-dots, texts, tones or auditory noise. Images, videos and audios stored in files could also be presented. The application was developed natively for iPadOS and iOS using the low-level interface Metal for accessing the graphics processing unit, which results in high timing performance.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1008
Author(s):  
Hatice Ceylan Koydemir ◽  
Aniruddha Ray

Mobile devices have increasingly become an essential part of the healthcare system worldwide [...]


2013 ◽  
Vol 26 (6) ◽  
pp. 614-626 ◽  
Author(s):  
J. Venkatanathan ◽  
V. Kostakos ◽  
E. Karapanos ◽  
J. Goncalves

Sign in / Sign up

Export Citation Format

Share Document