Simulated Performance of TFRC, DCCP, SCTP, and UDP Protocols Over Wired Networks

Author(s):  
Dimitris N. Kanellopoulos ◽  
Ali H. Wheeb

Multimedia applications impose different QoS requirements (e.g., bounded end-to-end delay and jitter) and need an enhanced transport layer protocol that should handle packet loss, minimize errors, manage network congestion, and transmit efficiently. Across an IP network, the transport layer protocol provides data transmission and affects the QoS provided to the application on hand. The most common transport layer protocols used by Internet applications are TCP and UDP. There are also advanced transport layer protocols such as DCCP and TFRC. The authors evaluated the performance of UDP, DCCP, SCTP, and TFRC over wired networks for three traffic flows: data transmission, video streaming, and voice over IP. The evaluation criteria were throughput, end-to-end delay, and packet loss ratio. They compared their performance to learn in which traffic flow/service each of these protocols functions better than the others. The throughput of SCTP and TFRC is better than UDP. DCCP is superior to SCTP and TFRC in terms of end-to-end delay. SCTP is suitable for Internet applications that require high bandwidth.

Author(s):  
Ali Hussein Wheeb

<p>The demand for internet applications has increased rapidly.  Providing quality of service (QoS) requirements for varied internet application is a challenging task. One important factor that is significantly affected on the QoS service is the transport layer. The transport layer provides end-to-end data transmission across a network. Currently, the most common transport protocols used by internet application are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). Also, there are recent transport protocols such as DCCP (data congestion control protocol), SCTP (stream congestion transmission protocol), and TFRC (TCP-friendly rate control), which are in the standardization process of Internet Engineering Task Force (IETF). In this paper, we evaluate the performance of  UDP, DCCP, SCTP and TFRC protocols for different traffic flows: data transmission, video traffic, and VOIP in wired networks. The performance criteria used for this evaluation include throughput, end to end delay, and packet loss rate. Well-known network simulator NS-2 used to implement the UDP, DCCP, SCTP, and TFRC protocols performance comparison. Based on the simulation results, the performance throughput of  SCTP and TFRC is better than UDP. Moreover, DCCP performance is superior SCTP and TFRC in term of end-to-end delay.</p>


Author(s):  
Suha Sahib Oleiwi ◽  
Ghassan N. Mohammed ◽  
Israa Al_Barazanchi

The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.


Author(s):  
Andy Hidayat Jatmika ◽  
I Made Windra Yudistiana ◽  
Ariyan Zubaidi

One sector that greatly influences it is in terms of network security. This is due to the characteristics of the MANET network that are dynamic so that the MANET network is very easily disturbed by irresponsible parties. One of the attacks that can occur in MANET network is Route Request (RREQ) Flooding Attacks. In RREQ flooding attacks in the form of fake nodes that are outside the area of the network and broadcast RREQ to the destination node in the network, so that it meets the bandwidth capacity which results in a decrease in quality in determining the route of sending data or information to the destination node. To prevent the occurrence of RREQ flooding attacks, a prevention method for these attacks is required, namely the RREQ Flooding Attacks Prevention (RFAP). This method works by finding nodes that are likely to be malicious nodes then isolated from the network to be restored to normal nodes. This research will optimize the AODV and AOMDV routing protocols by adding RFAP prevention methods and knowing the performance of the two protocols in terms of throughput, average end-to-end delay and normalized routing load. Based on the results of the simulation, that the application of the method RFAP on AODV routing protocol can produce network quality is better than AOMDV protocol, both in terms of throughput, average end-to-end delay and normalized routing load.


2019 ◽  
Vol 16 (2) ◽  
pp. 30
Author(s):  
Fakhrur Razi ◽  
Ipan Suandi ◽  
Fahmi Fahmi

The energy efficiency of mobile devices becomes very important, considering the development of mobile device technology starting to lead to smaller dimensions and with the higher processor speed of these mobile devices. Various studies have been conducted to grow energy-aware in hardware, middleware and application software. The step of optimizing energy consumption can be done at various layers of mobile communication network architecture. This study focuses on examining the energy consumption of mobile devices in the transport layer protocol, where the processor speed of the mobile devices used in this experiment is higher than the processor speed used in similar studies. The mobile device processor in this study has a speed of 1.5 GHz with 1 GHz RAM capacity. While in similar studies that have been carried out, mobile device processors have a speed of 369 MHz with a RAM capacity of less than 0.5 GHz. This study conducted an experiment in transmitting mobile data using TCP and UDP protocols. Because the video requires intensive delivery, so the video is the traffic that is being reviewed. Energy consumption is measured based on the amount of energy per transmission and the amount of energy per package. To complete the analysis, it can be seen the strengths and weaknesses of each protocol in the transport layer protocol, in this case the TCP and UDP protocols, also evaluated the network performance parameters such as delay and packet loss. The results showed that the UDP protocol consumes less energy and transmission delay compared to the TCP protocol. However, only about 22% of data packages can be transmitted. Therefore, the UDP protocol is only effective if the bit rate of data transmitted is close to the network speed. Conversely, despite consuming more energy and delay, the TCP protocol is able to transmit nearly 96% of data packets. On the other hand, when compared to mobile devices that have lower processor speeds, the mobile devices in this study consume more energy to transmit video data. However, transmission delay and packet loss can be suppressed. Thus, mobile devices that have higher processor speeds are able to optimize the energy consumed to improve transmission quality.Key words: energy consumption, processor, delay, packet loss, transport layer protocol


2015 ◽  
Vol 72 (5) ◽  
Author(s):  
Ahmed Abu-Khadrah ◽  
Zahriladha Zakaria ◽  
Mohdazlishah Othman

Nowadays supporting quality of service (QOS) for real time application is the main challenge of the wireless area network. 802.11standards use distributed Coordination Function (DCF) protocol and Enhanced Distributed Channel Access (EDCA) protocol in the MAC layer. DCF protocol has only one queue for different data types, it deals with data depending on the arriving time. There is no priority to serve real time applications faster. However EDCA protocol has four queues and each queue works with specific data type. Voice, video, best effort and background are the different queues in the EDCA protocol. Different parameters and priorities are defined for each queue. The voice queue reserves the highest priority and serves its data first. In this paper QOS parameters are measured for both DCF and EDCA protocol by using OPNET simulation. The QOS parameters must reach the requirements to support QOS. The results show how QOS parameters do not reach the requirements when using DCF protocol. The values of the end to end delay and the packet loss percentage are 0.514second, 19.04% respectively. But, when using EDCA protocol the end to end delay becomes 0.0624 second and the percentage of the packet loss decreases until reach 0.00617%. So the QOS parameters achieve requirements with EDCA protocol and support QOS.


Author(s):  
Ali H. Wheeb ◽  
Dimitris N. Kanellopoulos

Mobile ad-hoc networks (MANETs) are composed of mobile nodes communicating through wireless medium, without any fixed centralized infrastructure. Providing quality of service (QoS) support to multimedia streaming applications over MANETs is vital. This paper focuses on QoS support, provided by the stream control transmission protocol (SCTP) and the TCP-friendly rate control (TFRC) protocol to multimedia streaming applications over MANETs. In this study, three QoS parameters were considered jointly: (1) packet delivery ratio (PDR), (2) end-to-end delay, (3) and throughput. Specifically, the authors analyzed and compared the simulated performance of the SCTP and TFRC transport protocols for delivering multimedia streaming over MANETs. Two simulation scenarios were conducted to study the impact of traffic load and node speed (mobility) to their performance. Based on the simulation results, the authors found that the PDR and the end-to-end delay of TFRC are slightly better than those of SCTP in both scenarios. Additionally, the performance of SCTP is significantly better than TFRC in terms of throughput.


2020 ◽  
Vol 9 (3) ◽  
pp. 40 ◽  
Author(s):  
Afsana Ahamed ◽  
Hamid Vakilzadian

A vehicular ad hoc network (VANET) is a technology in which moving cars are used as routers (nodes) to establish a reliable mobile communication network among the vehicles. Some of the drawbacks of the routing protocol, Ad hoc On-Demand Distance Vector (AODV), associated with VANETs are the end-to-end delay and packet loss. We modified the AODV routing protocols to reduce the number of route request (RREQ) and route reply (RREP) messages by adding direction parameters and two-step filtering. The two-step filtering process reduces the number of RREQ and RREP packets, reduces the packet overhead, and helps to select the stable route. In this study, we show the impact of the direction parameter in reducing the end-to-end delay and the packet loss in AODV. The simulation results show a 1.4% reduction in packet loss, an 11% reduction in the end-to-end delay, and an increase in throughput.


Author(s):  
Jebril A. Battsh ◽  
Tarek Rahil Sheltami ◽  
Ashraf S. Hasan Mhamoud ◽  
Abdulaziz Y. Barnawi

This article describes how with the continuous developments in communication technology, the use of wireless network devices is increasing rapidly. However, most companies still rely on wired networks and do not trust wireless networks, especially for process control applications. The confidence in wireless technologies can be built by first evaluating the technology before using it for industrial applications. To this end, the performance of three wireless sensor networks (WSNs) standards, namely, ZigBee, WirelessHART and ISA100, is evaluated. The performance metrics are the throughput, the end to end delay, and the energy consumption. The results show that ISA100 and WirelessHART perform better than ZigBee in large networks. In addition, ISA100 is more flexible than WirelessHART, since it allows using the combination of slotted and slow hopping and configurable timeslot sizes.


2013 ◽  
Vol 433-435 ◽  
pp. 1795-1799
Author(s):  
Hui Min Weng ◽  
Ming He Huang ◽  
Hao Wang ◽  
Chang Qiao Xu ◽  
Kai Liu

Stream Control Transmission Protocol (SCTP) is a new generation of reliable transport layer protocol, unlike TCP, it has new features of multi-homing and multi-streaming, and has good scalability. SCTP is expected to replace TCP as the next generation of universal transport layer protocol. We introduce and analyze the basic structure and features of SCTP, introduce the related research of SCTP, including the implementation method of mobile SCTP and the Concurrent Multipath Transfer mechanism. Finally, compared and analyzed the performance of TCP, SCTP and SCTP-CMT by the ns-2 simulations, results show that in the case of multiple paths are available, the transmission performance of SCTP and SCTP-CMT are both better than TCP.


Sign in / Sign up

Export Citation Format

Share Document