Music Control in an Interactive Conducting System Using Kinect

Author(s):  
Yi-Shin Chen ◽  
Leng-Wee Toh ◽  
Yi-Lan Liu

Music conducting is the art of directing musical ensembles with hand gestures to personalize and diversify a piece of music. Although the ability to successfully perform a musical piece demands intense training and coordination for the conductor and the orchestra, preparing a practice session is expensive and time-consuming. Hence, there is a genuine need for alternatives capable of providing adequate training for conductors at all skill levels. The potential use of virtual and augmented reality technology holds particular promise. The goal of this research is to examine the mechanics of music conducting and to develop a system capable of closely simulating the experience of conducting a piece of music. After extensive discussions with professional and nonprofessional conductors, in addition to wide-ranging research regarding music conducting materials, several key features of conducting were identified. A set of lightweight algorithms exploring these features was developed to enable tempo control, volume adjustment, and instrument emphasis, which are core components of conducting. Such a system would be a helpful training tool for students, an experiential tool allowing professional conductors and composers to shape music at a low cost, or an entertainment tool for nonprofessional music lovers. In this paper, we propose a real-time interactive conducting system using Microsoft Kinect. The proposed system overcomes the limitation of Kinect's design, which is generally designed for large body movements. In this system, delicate conducting signals can be correctly recognized without referencing any prior knowledge. Evaluation of the algorithms in real-world scenarios reveals promising results. The system was evaluated by conductors of all skill levels and provided a high level of accuracy and a low latency. Users of the final system expressed satisfaction with the virtual experience.

Author(s):  
Daniele Regazzoni ◽  
Andrea Vitali ◽  
Caterina Rizzi ◽  
Giorgio Colombo

A number of pathologies impact on the way a patient can either move or control the movements of the body. Traumas, articulation arthritis or generic orthopedic disease affect the way a person can walk or perform everyday movements; brain or spine issues can lead to a complete or partial impairment, affecting both muscular response and sensitivity. Each of these disorder shares the need of assessing patient’s condition while doing specific tests and exercises or accomplishing everyday life tasks. Moreover, also high-level sport activity may be worth using digital tools to acquire physical performances to be improved. The assessment can be done for several purpose, such as creating a custom physical rehabilitation plan, monitoring improvements or worsening over time, correcting wrong postures or bad habits and, in the sportive domain to optimize effectiveness of gestures or related energy consumption. The paper shows the use of low-cost motion capture techniques to acquire human motion, the transfer of motion data to a digital human model and the extraction of desired information according to each specific medical or sportive purpose. We adopted the well-known and widespread Mocap technology implemented by Microsoft Kinect devices and we used iPisoft tools to perform acquisition and the preliminary data elaboration on the virtual skeleton of the patient. The focus of the paper is on the working method that can be generalized to be adopted in any medical, rehabilitative or sportive condition in which the analysis of the motion is crucial. The acquisition scene can be optimized in terms of size and shape of the working volume and in the number and positioning of sensors. However, the most important and decisive phase consist in the knowledge acquisition and management. For each application and even for each single exercise or tasks a set of evaluation rules and thresholds must be extracted from literature or, more often, directly form experienced personnel. This operation is generally time consuming and require further iterations to be refined, but it is the core to generate an effective metric and to correctly assess patients and athletes performances. Once rules are defined, proper algorithms are defined and implemented to automatically extract only the relevant data in specific time frames to calculate performance indexes. At last, a report is generated according to final user requests and skills.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Marceline F. Finda ◽  
Fredros O. Okumu ◽  
Elihaika Minja ◽  
Rukiyah Njalambaha ◽  
Winfrida Mponzi ◽  
...  

Abstract Background Different forms of mosquito modifications are being considered as potential high-impact and low-cost tools for future malaria control in Africa. Although still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding prevailing community perceptions of mosquito modification is, therefore, crucial for effective design and implementation of these interventions. This study investigated community perceptions regarding genetically-modified mosquitoes (GMMs) and their potential for malaria control in Tanzanian villages where no research or campaign for such technologies has yet been undertaken. Methods A mixed-methods design was used, involving: (i) focus group discussions (FGD) with community leaders to get insights on how they frame and would respond to GMMs, and (ii) structured questionnaires administered to 490 community members to assess awareness, perceptions and support for GMMs for malaria control. Descriptive statistics were used to summarize the findings and thematic content analysis was used to identify key concepts and interpret the findings. Results Nearly all survey respondents were unaware of mosquito modification technologies for malaria control (94.3%), and reported no knowledge of their specific characteristics (97.3%). However, community leaders participating in FGDs offered a set of distinctive interpretive frames to conceptualize interventions relying on GMMs for malaria control. The participants commonly referenced their experiences of cross-breeding for selecting preferred traits in domestic plants and animals. Preferred GMMs attributes included the expected reductions in insecticide use and human labour. Population suppression approaches, requiring as few releases as possible, were favoured. Common concerns included whether the GMMs would look or behave differently than wild mosquitoes, and how the technology would be integrated into current malaria control policies. The participants emphasised the importance and the challenge of educating and engaging communities during the technology development. Conclusions Understanding how communities perceive and interpret novel technologies is crucial to the design and effective implementation of new vector control programmes. This study offers vital clues on how communities with no prior experience of modified mosquitoes might conceptualize or respond to such technologies when deployed in the context of malaria control programmes. Drawing upon existing interpretive frames and locally-resonant analogies when deploying such technologies may provide a basis for more durable public support in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
J. A. van Ling ◽  
G. M. J. Bökkerink ◽  
I. de Blaauw ◽  
S. M. B. I. Botden

Abstract Background An Anorectal Malformation (ARM) is a rare congenital malformation, which requires proper correction to ensure the best long-term prognosis. These procedures are relatively infrequent and complex, in which a structured approach is important. Therefore, training on an affordable model could be beneficial. Methods A low-cost ARM model was developed. The base was reusable and the perineal body disposable. Both expert pediatric surgeons (Experts) and residents/fellows (Target group) were recruited for this study. After testing the model, they completed a questionnaire regarding the realism and didactic value of the model, using a 5-point Likert scale. Results Forty-four participants were recruited (Target group n = 20, Experts n = 24). The model has high mean scores of 3.8–4.4 for the total group and even higher on several aspects by the Target group. The experts regarded the haptics and manipulation of the fistula less realistic than the Target group (3.7 versus 4.3, p = 0.021 and 4.2 versus 4.6, p = 0.047). It was considered to be a very good training tool (mean 4.3), without significant differences between the groups. Conclusions These results show general consensus that this model is a potent training tool for the component steps of the repair of an ARM with recto-perineal fistula by sagittal approach.


2020 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Soroush Ojagh ◽  
Sara Saeedi ◽  
Steve H. L. Liang

With the wide availability of low-cost proximity sensors, a large body of research focuses on digital person-to-person contact tracing applications that use proximity sensors. In most contact tracing applications, the impact of SARS-CoV-2 spread through touching contaminated surfaces in enclosed places is overlooked. This study is focused on tracing human contact within indoor places using the open OGC IndoorGML standard. This paper proposes a graph-based data model that considers the semantics of indoor locations, time, and users’ contexts in a hierarchical structure. The functionality of the proposed data model is evaluated for a COVID-19 contact tracing application with scalable system architecture. Indoor trajectory preprocessing is enabled by spatial topology to detect and remove semantically invalid real-world trajectory points. Results show that 91.18% percent of semantically invalid indoor trajectory data points are filtered out. Moreover, indoor trajectory data analysis is innovatively empowered by semantic user contexts (e.g., disinfecting activities) extracted from user profiles. In an enhanced contact tracing scenario, considering the disinfecting activities and sequential order of visiting common places outperformed contact tracing results by filtering out unnecessary potential contacts by 44.98 percent. However, the average execution time of person-to-place contact tracing is increased by 58.3%.


2016 ◽  
Author(s):  
Iain Lunney

ABSTRACT In a cost-sensitive market driven by depressed commodity prices, significant capital challenges exist for operators interested in pursuing exploration activities in remote environments to define their producible reserves. This paper explores the organizational and operational model developed by a service company over several remote area mobilizations; this model resulted in an optimized low-cost service delivery model characterized by top quartile operational key performance indicators (KPIs). The model centralizes critical functions of an operational organization into discrete service units that are located near the operational location or that provide remote assistance with communication and reporting lines in place to function effectively. Top quartile operational performance and tool availability is a result of placing a remote repair and maintenance facility that includes containerized specialty modules near the operational area. The upfront bottomhole assembly engineering, 24/7 monitoring, and proactive feedback of logged data, drillstring dynamics, and wellbore hydraulics are performed by a core team of subject matter experts in their respective disciplines from an established centralized operating center. The operational KPIs over the course of the six well exploration campaign provided substantial evidence to support the reliability of the model and the high level of experience used in both the remote maintenance facility and the operations center support team.


2015 ◽  
Vol 76 (11) ◽  
Author(s):  
Katherina Bujang ◽  
Ahmad Faiz Ahmad Nazri ◽  
Ahmad Fidaudin Ahmad Azam ◽  
Jamaluddin Mahmud

Microsoft Kinect has been identified as a potential alternative tool in the field of motion capture due to its simplicity and low cost. To date, the application and potential of Microsoft Kinect has been vigorously explored especially for entertainment and gaming purposes. However, its motion capture capability in terms of repeatability and reproducibility is still not well addressed. Therefore, this study aims to explore and develop a motion capture system using Microsoft Kinect; focusing on developing the interface, motion capture protocol as well as measurement analysis. The work is divided into several stages which include installation (Microsoft Kinect and MATLAB); parameters and experimental setup, interface development; protocols development; motion capture; data tracking and measurement analysis. The results are promising, where the variances are found to be less than 1% for both repeatability and reproducibility analysis. This proves that the current study is significant and the gained knowledge could contribute


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Margaret Kalacska ◽  
Oliver Lucanus ◽  
J. Pablo Arroyo-Mora ◽  
Étienne Laliberté ◽  
Kathryn Elmer ◽  
...  

The rapid increase of low-cost consumer-grade to enterprise-level unmanned aerial systems (UASs) has resulted in the exponential use of these systems in many applications. Structure from motion with multiview stereo (SfM-MVS) photogrammetry is now the baseline for the development of orthoimages and 3D surfaces (e.g., digital elevation models). The horizontal and vertical positional accuracies (x, y and z) of these products in general, rely heavily on the use of ground control points (GCPs). However, for many applications, the use of GCPs is not possible. Here we tested 14 UASs to assess the positional and within-model accuracy of SfM-MVS reconstructions of low-relief landscapes without GCPs ranging from consumer to enterprise-grade vertical takeoff and landing (VTOL) platforms. We found that high positional accuracy is not necessarily related to the platform cost or grade, rather the most important aspect is the use of post-processing kinetic (PPK) or real-time kinetic (RTK) solutions for geotagging the photographs. SfM-MVS products generated from UAS with onboard geotagging, regardless of grade, results in greater positional accuracies and lower within-model errors. We conclude that where repeatability and adherence to a high level of accuracy are needed, only RTK and PPK systems should be used without GCPs.


Agro Ekonomi ◽  
2021 ◽  
Vol 32 (2) ◽  
Author(s):  
Setia Sari Girsang ◽  
Agung B Santosa ◽  
Tommy Purba ◽  
Deddy R Siagian ◽  
Khadijah E Ramija

Accelerating the introduction of a new technological package is needed to increase the productivity of high elevation puddled rice in Humbang Hasundutan. The objectives of the study are to find out the perception of the existence of technological packages and farmers' preference for a new technological package. The study used a survey method with primary data gathered using questionnaires. The criteria of locations and respondents were used to obtain relevant respondents and data concerning their knowledge of high elevation puddled rice cultivation.  The collected data were processed by using Importance Performance Analysis in order to find out the level of Importance and Satisfaction of the indicators and the valued aspects in the technological package components. The results of the study showed that the socio-economic aspects had to be heeded in organizing the technological package. Indicators having a high level of importance and a low level of satisfaction consisted of production cost, quality of seeds, farmer groups empowerment, technology information institution, capital cost, agricultural tools and machines, pest control, sales price, irrigation canals, and farm roads. On the other hand, introducing new superior seeds, productivity attribute and planting age were important indicators for local farmers as to improve the quality of existing seeds. Farmers group expected that the technological package had a high level of productivity, better access to input, low cost, and good user-friendliness in its application.


2021 ◽  
Vol 6 (2) ◽  
pp. 169-182
Author(s):  
Romoldanova Iryna ◽  
Vysochina Nadiia

Introduction. The article discusses the features of self-esteem in taekwondo athletes of various skill levels and gender. The important role of diagnostics of the level of self-esteem of taekwondo athletes in the process of purposeful preparation of athletes for international competitions is pointed out. The interrelation of self-esteem with the effectiveness of competitive activity of qualified taekwondo athletes is shown.Aim is to study the level of self-esteem of taekwondo athletes of various qualifications and to establish its relationship with the effectiveness of training and competitive activity of athletes.Material and methods: analysis of literary sources and Internet, expert survey, pedagogical observation,methods of psychodiagnostics, methods of mathematical statistics.Results. It was found that more experienced taekwondo athletes who train in the second and more Olympic four-year cycle have a higher level of self-esteem in comparison with young athletes who are preparing for the Olympic Games for the first time. The lowest level of self-esteem (63.10 ± 11.34, p<0.05) was observed in young athletes who are preparing for the first time for responsible international competitions.Experienced male and female athletes had approximately the same high level of self-esteem manifestation (p> 0.05). Statistically significant correlations between the level of self-assessment of taekwondo athletes and the effectiveness of their competitive activity were established. Athletes with a higher level of self-esteem were distinguished by higher rates of impact efficiency (%) during performance in real competition conditions. Conclusion. The importance of research and further correction of the level of self-esteem of taekwondo athletes in the process of training athletes in the framework of four-year Olympic cycles is emphasized.


2021 ◽  
Author(s):  
Benjamin Secker

Use of the Internet of Things (IoT) is poised to be the next big advancement in environmental monitoring. We present the high-level software side of a proof-of-concept that demonstrates an end-to-end environmental monitoring system,<br><div>replacing Greater Wellington Regional Council’s expensive data loggers with low-cost, IoT centric embedded devices, and it’s supporting cloud platform. The proof-of-concept includes a Micropython-based software stack running on an ESP32 microcontroller. The device software includes a built-in webserver that hosts a responsive Web App for configuration of the device. Telemetry data is sent over Vodafone’s NB-IoT network and stored in Azure IoT Central, where it can be visualised and exported.</div><br>While future development is required for a production-ready system, the proof-of-concept justifies the use of modern IoT technologies for environmental monitoring. The open source nature of the project means that the knowledge gained can be re-used and modified to suit the use-cases for other organisations.


Sign in / Sign up

Export Citation Format

Share Document