Cell Proliferation on Titania Layer with In Vitro Apatite Forming Ability

Author(s):  
S. Yabe ◽  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka ◽  
Y. Yoshida ◽  
...  
2007 ◽  
Vol 330-332 ◽  
pp. 131-134
Author(s):  
S. Yabe ◽  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka ◽  
Y. Yoshida ◽  
...  

Titania layer was fabricated on the titanium substrates with chemical treatment with 20ml or 40ml of hydrogen peroxide solution and subsequent heat treatment at 400°C, coded as CHT20 and CHT40, respectively. CHT20 spontaneously deposited apatite on the surface in a simulated body fluid (SBF), while CHT40 did not. TF-XRD patterns showed that the diffraction intensity of anatase of CHT20 was higher than that of CHT40. It was suggested that the thicker titania layer indicated in vitro apatite forming ability. The cell proliferation of CHT20 and CHT40 were lower than NT and HT. Since the surface of titania layers became hydrophobic after autoclaving, we can suppose that the cell proliferation on CHT20 and CHT40 were lower than NT and HT due to their surface hydrophobicity.


Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


1982 ◽  
Vol 54 (4) ◽  
pp. 763-768 ◽  
Author(s):  
Ronald E. Allen ◽  
Gail Robinson ◽  
Matthew J. Parsons ◽  
Robert A. Merkel ◽  
William T. Magee

2019 ◽  
Vol 26 (12) ◽  
pp. 887-892
Author(s):  
Cynarha Daysy Cardoso da Silva ◽  
Cristiane Moutinho Lagos de Melo ◽  
Elba Verônica Matoso Maciel Carvalho ◽  
Mércia Andréa Lino da Silva ◽  
Rosiely Félix Bezerra ◽  
...  

Background: Lectins have been studied in recent years due to their immunomodulatory activities. Objective: We purified a lectin named OniL from tilapia fish (Oreochromis niloticus) and here we analyzed the cell proliferation and cytokine production in Balb/c mice splenocytes. Methods: Cells were stimulated in vitro in 24, 48, 72 hours and 6 days with different concentrations of OniL and Con A. Evaluation of cell proliferation was performed through [3H]-thymidine incorporation, cytokines were investigated using ELISA assay and cell viability assay was performed by investigation of damage through signals of apoptosis and necrosis. Results: OniL did not promote significant cell death, induced high mitogenic activity in relation to control and Con A and stimulated the cells to release high IL-2 and IL-6 cytokines. Conclusion: These findings suggest that, like Con A, OniL lectin can be used as a mitogenic agent in immunostimulatory assays.


Author(s):  
Morganna C. Lima ◽  
Elisa A. N. Azevedo ◽  
Clarice N. L. de Morais ◽  
Larissa I. O. de Sousa ◽  
Bruno M. Carvalho ◽  
...  

Background: Zika virus is an emerging arbovirus of global importance. ZIKV infection is associated with a range of neurological complications such as the Congenital Zika Syndrome and Guillain Barré Syndrome. Despite the magnitude of recent outbreaks, there is no specific therapy to prevent or to alleviate disease pathology. Objective: To investigate the role of P-MAPA immunomodulator in Zika-infected THP-1 cells. Methods: THP-1 cells were subjected at Zika virus infection (Multiplicity of Infection = 0.5) followed by treatment with P-MAPA for until 96 hours post-infection. After that, the cell death was analyzed by annexin+/ PI+ and caspase 3/ 7+ staining by flow cytometry. In addition, the virus replication and cell proliferation were accessed by RT-qPCR and Ki67 staining, respectively. Results: We demonstrate that P-MAPA in vitro treatment significantly reduces Zika virus-induced cell death and caspase-3/7 activation on THP-1 infected cells, albeit it has no role in virus replication and cell proliferation. Conclusions: Our study reveals that P-MAPA seems to be a satisfactory alternative to inhibits the effects of Zika virus infection in mammalian cells.


2020 ◽  
Vol 20 (18) ◽  
pp. 1628-1639
Author(s):  
Sergi Gómez-Ganau ◽  
Josefa Castillo ◽  
Andrés Cervantes ◽  
Jesus Vicente de Julián-Ortiz ◽  
Rafael Gozalbes

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


2019 ◽  
Vol 19 (5) ◽  
pp. 610-619 ◽  
Author(s):  
Xue-Qing Zhang ◽  
Lu-Ting Yu ◽  
Pei Du ◽  
Tian-Qi Yin ◽  
Zhi-Yuan Zhang ◽  
...  

Background:Regenerating islet-derived gene family member 4 (Reg4), a well-investigated growth factor in the regenerative pancreas, has recently been reported to be highly associated with a majority of gastrointestinal cancers. Pathological hyper-expression or artificial over-expression of Reg4 causes acceleration of tumor growth, migration, and resistance to chemotherapeutic 5-Fluorouracil (5-FU). Until now, no method has been successfully established for eliminating the effects of Reg4 protein.Methods:This study reports the production of an engineered immunoglobin, a single-chain variable fragment (scFv-Reg4), to specifically bind Reg4 and block the bioactivity. The complementary-determining regions (CDRs) against Reg4 were assigned using MOE and ZDOCK servers. The binding affinity (KD) was determined by bio-layer interferometry (BLI). MKN45 and AGS cell proliferation was determined by Thiazolyl blue tetrazolium bromide (MTT) method and the cell apoptosis was detected by flow cytometry assay.Results:The KD of scFv-Reg4 to Reg4 was determined to be 1.91×10-8. In MKN45 and AGS cell lines, scFv- Reg4 depressed Reg4-stimulated cell proliferation and the inhibitory rates were 27.7±1.5% and 17.3±2.6%, respectively. Furthermore, scFv significantly enhanced 5-FU-induced cell death, from 23.0±1.0% to 28.4±1.2% in MKN45 and 28.2±0.7% to 36.6±0.6% in AGS cells. Treatment with scFv alone could lyse cancer cells to a certain extent, but no significance has been observed.Conclusion:The single-chain antibody (scFv-Reg4) significantly inhibited gastric cancer cell proliferation and synergistically enhanced the lethal effect of 5-FU. Thus, traditional chemo-/radio- therapeutics supplemented with scFv-Reg4 may provide advances in the strategy for gastrointestinal cancer treatment.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Jean Valdir Uchôa Teixeira ◽  
Fátima Raquel Azevedo Maia ◽  
Mariana Carvalho ◽  
Rui Reis ◽  
Joaquim Miguel Oliveira ◽  
...  

Aim: To established a simple, controlled and reproducible method to synthesize gallium (Ga)-coated polydopamine (PDA) nanoparticles (NPs). Materials & methods: PDA NPs were synthesized in alkali medium with posterior Ga shell formation due to ion chelation on the NP surface. Results: The obtained results with energy-dispersive x-ray spectroscopy confirmed the incorporation of Ga on the PDA NP surface. The cytotoxicity of Ga-coated PDA NPs was evaluated in vitro at different concentrations in contact with human adipose-derived stem cells. Further cell analysis also demonstrated the benefit of Ga-coated PDA NPs, which increased the cell proliferation rate compared with noncoated PDA NPs. Conclusion: This study indicated that Ga could work as an appropriate shell for PDA NPs, inducing cell proliferation at the analyzed concentrations.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia-Huang Liu ◽  
Qi-Fei Wu ◽  
Jun-Ke Fu ◽  
Xiang-Ming Che ◽  
Hai-Jun Li

Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly ( P < 0.05 ); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly ( P < 0.05 ) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly ( P < 0.05 ); YAP and MMP9 mRNA expression increased significantly ( P < 0.05 ) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.


Author(s):  
Niketa Chauhan ◽  
Nilay Lakhkar ◽  
Amol Chaudhari

AbstractThe process of bone regeneration in bone grafting procedures is greatly influenced by the physicochemical properties of the bone graft substitute. In this study, porous phosphate glass (PPG) morsels were developed and their physicochemical properties such as degradation, crystallinity, organic content, surface topography, particle size and porosity were evaluated using various analytical methods. The in vitro cytotoxicity of the PPG morsels was assessed and the interaction of the PPG morsels with Dental Pulp Stem Cells (DPSCs) was studied by measuring cell proliferation and cell penetration depth. The cell-material interactions between PPG morsels and a commercially available xenograft (XG) were compared. The PPG morsels were observed to be amorphous, biocompatible and highly porous (porosity = 58.45%). From in vitro experiments, PPG morsels were observed to be non-cytotoxic and showed better cell proliferation. The internal surface of PPG was easily accessible to the cells compared to XG.


Sign in / Sign up

Export Citation Format

Share Document