The Recycled Aggregates with Surface Treatment by Pozzolanics

Author(s):  
Jae Jun Kim ◽  
Sang Heum Youn ◽  
M.J. Cho ◽  
H.T. Shin ◽  
Jeong Bae Yoon ◽  
...  
2005 ◽  
Vol 287 ◽  
pp. 63-68 ◽  
Author(s):  
Jae Jun Kim ◽  
Sang Heum Youn ◽  
M.J. Cho ◽  
H.T. Shin ◽  
Jeong Bae Yoon ◽  
...  

To improve the mechanical properties of concretes containing recycled aggregates, pozzolanic materials were used to decrease the porosity of the recycled aggregates. These pozzolanic materials were adhered on the surface of recycled aggregates and closed the open pores so that the water absorption was decreased 1~2% as the amount of adsorption was increased. Compressive strength of cement mortars and concretes using surface treated recycled aggregates reaches above 95% of the strength of its natural counterparts. Investigation of the microstructures using the scanning electron micrographs showed the formation of dense interface after the adsorption treatment of pozzolanics to recycled aggregates.


Author(s):  
Jae Jun Kim ◽  
Sang Heum Youn ◽  
M.J. Cho ◽  
H.T. Shin ◽  
Jeong Bae Yoon ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2893
Author(s):  
Kui Hu ◽  
Yujing Chen ◽  
Caihua Yu ◽  
Dong Xu ◽  
Shihao Cao ◽  
...  

Mixed recycled aggregates (MRA) from construction and demolition waste (CDW) with high-purity and environmental performance are required for highway construction application in base layer and precast concrete curbs. The main problematic constituents that reduce the quality level of the recycled aggregates applications are brick components, flaky particles, and attached mortar, which make up a large proportion of CDW in some countries. This paper studies the potential of brick separation technology based on shape characteristics in order to increase the recycled concrete aggregates (RCA) purity for MRA quality improvement. MRA after purification was also processed with surface treatment experiment by rotating in a cylinder to improve the shape characteristics and to remove the attached mortar. The purity, strength property, densities, water absorption ratio, shape index, and mortar removal ratio of MRA were studied before and after the use of the brick separation and surface treatment proposed in this study. Finally, the recycled aggregates upgradation solution was adopted in a stationary recycling plant designed for a length of 113 km highway construction. The properties of CDW mixed concrete for precast curbs manufacturing were conducted. The results indicate that problematic fractions (brick components, particle shape, and surface weakness) in the MRA were significantly reduced by using brick separation and surface treatment solution. Above all, it is very important that the proposed brick separation method was verified to be practically adopted in CDW recycling plant for highway base layer construction and concrete curbs manufacturing at a low cost.


2005 ◽  
Vol 486-487 ◽  
pp. 305-308 ◽  
Author(s):  
Jae Jun Kim ◽  
Sang Heum Youn ◽  
M.J. Cho ◽  
H.T. Shin ◽  
Jeong Bae Yoon ◽  
...  

To improve the mechanical properties of concretes containing recycled aggregates, pozzolanic materials such as Silica Fume and Meta Kaolin were used to decrease the porosity of the recycled aggregates. These pozzolanic aterials were adhered on the surface of recycled aggregates and closed the open pores so that the water absorption was decreased 1~2% as the amount of adsorption was increased. Compressive strength of cement mortars and concretes using surface treated recycled aggregates reached above 95% of the strength of its natural counterparts. Investigation of the microstructures using the scanning lectron micrographs showed the formation of dense interface after the adsorption treatment of pozzolanics to recycled aggregates.


2019 ◽  
Vol 11 (15) ◽  
pp. 4182 ◽  
Author(s):  
Waiching Tang ◽  
Mehrnoush Khavarian ◽  
Ali Yousefi ◽  
Ricky W. K. Chan ◽  
Hongzhi Cui

In the last decade there has been a massive growth for development of concrete infrastructures all around the world. Take into account environmental concerns, concrete technology should direct efforts toward assuring development and fabrication of sustainable and resilient concrete. For this purpose, incorporation of recycled concrete aggregate in concrete products particularly self-compacting concrete (SCC) for structural and non-structural application would be significant achievement. In this study the fresh and hardened properties of SCC prepared by substituting natural aggregates (NA) with recycled coarse aggregates (RCA). In addition, bonding behaviour of reinforced RCA-SCC for structural application was investigated. Moreover, surface treatment of RCA using lithium silicate solution was proposed to investigate its feasibility to improve the fresh and hardened properties of SCC as well as its bonding strength. The mechanical properties including compressive strength, tensile strength and elastic modulus of SCC mixes using untreated RCA and treated RCA (TRCA) were investigated. The results showed an improvement in performance of SCC mixes made with TRCA in compare with the untreated samples. The bond behaviour between SCC made with RCA and steel reinforcement was studied and the relationship between the brittleness and bonding of SCC mixes using untreated RCA and TRCA determined. The effect of surface treatment on the interfacial transition zone (ITZ) between adhered mortar and RCA studied using scanning electron microscope (SEM). It was determined that the treatment of RCA improved the bond at the ITZ through densification. The results gave experimental evidence of the suitability of RCA-SCC for structural use and application in reinforced concrete.


2020 ◽  
Vol 9 (4) ◽  
pp. e27942662
Author(s):  
Patrícia Capellato ◽  
Cláudia Eliana Bruno Marino ◽  
Gilbert Silva ◽  
Lucas Victor Benjamim Vasconcelos ◽  
Rodrigo Perito Cardoso ◽  
...  

During the last decades, researchers have been growing the interest in surface treatment with an antimicrobial agent. Silver nanoparticles (AgNPs) are widely used in biomedical fields due to their potent antimicrobial activity. So, in this study was investigated silver particles (isles) coated on titanium surface for dental and orthopedic application. Silver particles coating process on titanium surface were performed via sputtering that is a plasma-assisted deposition technique with and titanium without treatment was applied as comparing standard. Plasma treatment parameters were optimized so that the result was not a thin film of Ag but dispersed particles of Ag on the Ti-cp surface. The alloy surfaces were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). In order to investigate antibacterial potential Staphylococcus aureus and Escherichia coli have been used at Agar diffusion assay. The results were analyzed by analysis of variance (ANOVA) in order to verify significant difference antimicrobial activity between samples that have shown no difference between the surfaces studied treatments. For silver deposition scattered particles (isles) over titanium surface for a 10-minute treatment, EDS revealed by silver clusters that the particles were not properly scattered onto surface, hence, the low effectiveness in antibacterial activity.


2013 ◽  
Vol 51 (10) ◽  
pp. 735-741
Author(s):  
Dong-Yong Kim ◽  
Eun-Wook Jeong ◽  
Kwun Nam Hui ◽  
Youngson Choe ◽  
Jung-Ho Han ◽  
...  

2008 ◽  
Vol 128 (5) ◽  
pp. 339-342
Author(s):  
Dai Ling ◽  
Yin Ting ◽  
Lin Fuchang ◽  
Yan Fei

Sign in / Sign up

Export Citation Format

Share Document