Dependence of Ionic Conductivity on the Thickness of β-AgI Thin Film Prepared on Polyethylene Terephthalate

2020 ◽  
Vol 38 ◽  
pp. 47-53
Author(s):  
Shin Ichi Furusawa ◽  
Yuuki Fukuda

β-AgI thin films with thicknesses of 0.09–8.9 µm were prepared on polyethylene terephthalate (PET) substrate. Dependence of ionic conductivity on the thickness of the β-AgI thin film was measured via impedance spectroscopy in the temperature range of 300–330 K. It has been confirmed that the ionic conductivity of the b-AgI thin film is several hundred times higher than the b-AgI bulk. The enhancement of ionic conductivity is considered to be due to the formation of a high ion-conducting region near the hetero-interface region of b-AgI and PET. Furthermore, it has been suggested that the activation energy and carrier density may change depending on the distance from the interface, and the thickness dependence of enhancement in ionic conductivity may be related to the film thickness dependence of crystal orientation and structural disorder of β-AgI thin films.

2018 ◽  
Vol 790 ◽  
pp. 3-8 ◽  
Author(s):  
Shin Ichi Furusawa ◽  
Tomosato Ida

Tensile stress was applied to β-AgI thin film prepared on a polyethylene terephthalate film, and the ion conduction response in the direction of the tensile extension was investigated. The ionic conductivity of the β-AgI thin film decreases and the activation energy for ionic conduction increases with increasing extension ratio. This behaviour is attributed to the modulation of the crystal framework by the extension of the AgI thin film.


2014 ◽  
Vol 895 ◽  
pp. 41-44
Author(s):  
Seiw Yen Tho ◽  
Kamarulazizi Ibrahim

In this work, the influences of plasma pre-treatment on polyethylene terephthalate (PET) substrate to the properties of ZnO thin film have been carried out. ZnO thin films were successfully grown on PET substrate by spin coating method. In order to study the effects of plasma pre-treatment, a comparison of treated and untreated condition was employed. Water contact angle measurement had been carried out for PET wettability study prior to ZnO thin film coating. Morphology study of ZnO thin film was performed by scanning probe microscope (SPM). Besides, optical study of the ZnO thin film was done by using UV-vis spectrophotometer. All the measured results show that plasma pre-treatment of PET substrate plays an important role in enhancing the wettability of PET and optical properties of the ZnO thin films. In conclusion, pre-treatment of PET surface is essential to produce higher quality ZnO thin film on this particular substrate in which would pave the way for the integration of future devices.


Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 421-436
Author(s):  
Aamir Iqbal Waidha ◽  
Vanita Vanita ◽  
Oliver Clemens

Composite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10−7 S cm−1 at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.


Author(s):  
Khalid Alzoubi ◽  
Susan Lu ◽  
Bahgat Sammakia ◽  
Mark Poliks

Flexible electronics represent an emerging area in the electronics packaging and systems integration industry with the potential for new product development and commercialization in the near future. Manufacturing electronics on flexible substrates will produce low cost devices that are rugged, light, and flexible. However, electronic systems are vulnerable to failures caused by mechanical and thermal stresses. For electronic systems on flexible substrates repeated stresses below the ultimate tensile strength or even below the yield strength will cause failures in the thin films. It is known that mechanical properties of thin films are different from those of bulk materials; so, it is difficult to extrapolate bulk material properties on thin film materials. The objective of this work is to study the behavior of thin-film metal coated flexible substrates under high cyclic bending fatigue loading. Polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are widely used substrates in the fabrication of microelectronic devices. Factors affecting the fatigue life of thin-film coated flexible substrates were studied, including thin film thickness, temperature, and humidity. A series of experiments for sputter-deposited copper on PET substrates were performed. Electrical resistance and crack growth rate were monitored during the experiments at specified time intervals. High magnification images were obtained to observe the crack initiation and propagation in the metal film. Statistical analysis based on design of experiments concepts was performed to identify the main factors and factor’s interaction that affect the life of a thin-film coated substrate. The results of the experiments showed that the crack starts in the middle of the sample and slowly grows toward the edges. Electrical resistance increases slightly during the test until the crack length covers about 90% of the total width of the sample where a dramatic increase in the resistance takes place.


2013 ◽  
Vol 20 (4) ◽  
pp. 644-647 ◽  
Author(s):  
Henrik Hovde Sønsteby ◽  
Dmitry Chernyshov ◽  
Michael Getz ◽  
Ola Nilsen ◽  
Helmer Fjellvåg

A multipurpose six-axis κ-diffractometer, together with the brilliance of the ESRF light source and a CCD area detector, has been explored for studying epitaxial relations and crystallinity in thin film systems. The geometrical flexibility of the six-axis goniometer allows measurement of a large volume in reciprocal space, providing an in-depth understanding of sample crystal relationships. By a set of examples of LaAlO3thin films deposited by the atomic layer deposition technique, the possibilities of the set-up are presented. A fast panoramic scan provides determination of the crystal orientation matrices, prior to more thorough inspection of single Bragg nodes. Such information, in addition to a broadening analysis of families of single reflections, is shown to correlate well with the crystallinity, crystallite size, strain and epitaxial relationships in the thin films. The proposed set-up offers fast and easy sample mounting and alignment, along with crucial information on key features of the thin film structures.


1991 ◽  
Vol 243 ◽  
Author(s):  
Toshio Ogawa ◽  
Satoshi Shindou ◽  
Atsuo Senda ◽  
Tohru Kasanami

AbstractLanthanum-modified lead-titanate (Pbo.85Lao.1Ti03) thin films were fabricated by rf magnetron sputtering on various kinds of substrates such as single-crystal MgO (100), r-plane sapphire and SI (100) with an MgO thin film layer. All the films were able to be evaluated using nickel alloy electrodes which possess low reactivity with PbO, excellent heat-resistance and oxidation-resistance. The quality of these films was affected by the kind of substrate and crystal orientation of nickel alloy electrode used. Furthermore, by controlling the crystal orientation of the alloy electrode, films on Si (100) with an MgO (100) layer showed good ferroelectricity.


2013 ◽  
Vol 582 ◽  
pp. 157-160 ◽  
Author(s):  
Takumi Oshima ◽  
Masaya Nohara ◽  
Takuya Hoshina ◽  
Hiroaki Takeda ◽  
Takaaki Tsurumi

We report the growth of Cu2O thin films on glass and MgO(100) substrates by molecular beam epitaxy. Crystal orientation of Cu2O thin films on glass substrate were changed from (100) to (111) with increasing the deposition rate. The Cu2O thin films were epitaxially grown on MgO(100) substrate with an orientation relationship of Cu2O(110) // MgO(100). The film quality and electrical properties of Cu2O thin films were changed with deposition rate. The slow deposition rate resulted in high conductivity and mobility, as well as good crystallinity and orientation.


2016 ◽  
Vol 4 (33) ◽  
pp. 12947-12954 ◽  
Author(s):  
Eongyu Yi ◽  
Weimin Wang ◽  
John Kieffer ◽  
Richard M. Laine

Conventional casting–sintering of flame made nanoparticles result in high density and ionic conductivity c-LLZO flexible thin film membranes.


2011 ◽  
Vol 145 ◽  
pp. 27-31
Author(s):  
Dein Shaw ◽  
Bo Han Zeng ◽  
Chuan Yi Kuo

A knife blade cutting experiment was performed to study the effect of clearance between two knife blades on cutting only one layer of a multi-layer thin film. The multi-layer thin films are made up of three major layers: a 0.1mm Polyethylene terephthalate (PET) layer, a 25 ~ 50 μm elastic plastic layer, and a 0.18 mm paper layer. The clearance between two knife blades is controlled by a micro manual stage. The cutting parameters are the clearance of knife blades, the edge of knife blades, and cutting speed. The relationships between layers to be cut and clearance between knife blades are measured using specific knife blades and a constant cut speed. Using the experimental results, several criteria for cutting paper layer are critically assessed. Through assessment of the criteria, the paper layer alone is practicably removed from multi-layer thin film. This experiment successfully provided a method to cut a specific layer but other layers of multi-layer thin film at once.


Sign in / Sign up

Export Citation Format

Share Document