Point-Line Meshing Gear Drive

2011 ◽  
Vol 121-126 ◽  
pp. 3391-3395
Author(s):  
Hai Huang ◽  
Hai Xiang Li ◽  
Qi Han Luo

Point-line meshing gear is a new-styled gear characterized by both easy manufacturing and divisibility of involute gears and high strength for contacting between convex and concave tooth profiles of a circular-arc gear. And contact strength of point-line meshing gears has improved by 1~2 times in comparison with involute gears, and bending strength of such gears has improved by approximately 15%, while noise has decreased even by 5~10dB (A). In addition, with the increase of load, noise will decrease by 3~4 dB (A). Only a few teeth or even 2~3 teeth are required for a pinion gear. There are single point-line meshing gears (equivalent to single arc gear), double point-line meshing gears (equivalent to double arc gear) and few-tooth point-line meshing gears, totaling three kinds, which are widely used in reducers for metallurgy, mining, craning, transport and chemical industries. And the three kinds of gears can be converted into soft tooth-flank, medium tooth-flank and hard tooth-flank gears. Here the types, characters, meshing features and dimension calculation of point-line meshing gears are described.

1994 ◽  
Vol 43 (489) ◽  
pp. 599-605 ◽  
Author(s):  
Akira YAMAKAWA ◽  
Takehisa YAMAMOTO ◽  
Tomoyuki AWAZU ◽  
Kenji MATSUNUMA ◽  
Takao NISHIOKA

Alloy Digest ◽  
1998 ◽  
Vol 47 (4) ◽  

Abstract Deltalloy 4032 has good machinability and drilling characteristics when using single-point or multispindle screw machines and an excellent surface finish using polycrystalline or carbide tooling. The alloy demonstrates superior wear resistance and may eliminate the need for hard coat anodizing. Deltalloy 4032 is characterized by high strength and a low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion and wear resistance as well as machining and surface treatment. Filing Code: AL-347. Producer or source: ALCOA Wire, Rod & Bar Division.


Author(s):  
Daniel Müller ◽  
Jens Stahl ◽  
Anian Nürnberger ◽  
Roland Golle ◽  
Thomas Tobie ◽  
...  

AbstractThe manufacturing of case-hardened gears usually consists of several complex and expensive steps to ensure high load carrying capacity. The load carrying capacity for the main fatigue failure modes pitting and tooth root breakage can be increased significantly by increasing the near surface compressive residual stresses. In earlier publications, different shear cutting techniques, the near-net-shape-blanking processes (NNSBP’s), were investigated regarding a favorable residual stress state. The influence of the process parameters on the amount of clean cut, surface roughness, hardness and residual stresses was investigated. Furthermore, fatigue bending tests were carried out using C-shaped specimens. This paper reports about involute gears that are manufactured by fineblanking. This NNSBP was identified as suitable based on the previous research, because it led to a high amount of clean cut and favorable residual stresses. For the fineblanked gears of S355MC (1.0976), the die edge radii were varied and the effects on the cut surface geometry, hardness distribution, surface roughness and residual stresses are investigated. The accuracy of blanking the gear geometry is measured, and the tooth root bending strength is determined in a pulsating test rig according to standardized testing methods. It is shown that it is possible to manufacture gears by fineblanking with a high precision comparable to gear hobbing. Additionally, the cut surface properties lead to an increased tooth root bending strength.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2602
Author(s):  
Huaqiao Wang ◽  
Jihong Chen ◽  
Zhichao Fan ◽  
Jun Xiao ◽  
Xianfeng Wang

Automated fiber placement (AFP) has been widely used as an advanced manufacturing technology for large and complex composite parts and the trajectory planning of the laying path is the primary task of AFP technology. Proposed in this paper is an experimental study on the effect of several different path planning placements on the mechanical behavior of laminated materials. The prepreg selected for the experiment was high-strength toughened epoxy resin T300 carbon fiber prepreg UH3033-150. The composite laminates with variable angles were prepared by an eight-tow seven-axis linkage laying machine. After the curing process, the composite laminates were conducted by tensile and bending test separately. The test results show that there exists an optimal planning path among these for which the tensile strength of the laminated specimens decreases slightly by only 3.889%, while the bending strength increases greatly by 16.68%. It can be found that for the specific planning path placement, the bending strength of the composite laminates is significantly improved regardless of the little difference in tensile strength, which shows the importance of path planning and this may be used as a guideline for future AFP process.


2013 ◽  
Vol 756-759 ◽  
pp. 161-165
Author(s):  
Qi Yin Shi ◽  
Chao Liu ◽  
Li Lin Cao ◽  
Zhen Wang

On the basis of the theoretical study and application of ordinary steel-encased concrete composite beam, this paper will focus on a new high-strength steel-encased concrete composite beam, and mainly studies high-performance steel Q420 and Q460, as well as high-strength concrete C60 and C80. Besides, an experimental study of 5 simply-supported beams is made, and the load-deflection curves of new SCCB are analyzed. The calculation formula of load which changes with depth of section and bending strength of the cross section is also analyzed. It is suggested that the calculated results announced should be identical with the experimental results.


Author(s):  
J Hedlund ◽  
A Lehtovaara

Gear analysis is typically performed using calculation based on gear standards. Standards provide a good basis in gear geometry calculation for involute gears, but these are unsatisfactory for handling geometry deviations such as tooth flank modifications. The efficient utilization of finite-element calculation also requires the geometry generation to be parameterized. A parameterized numerical approach was developed to create discrete helical gear geometry and contact line by simulating the gear manufacturing, i.e. the hobbing process. This method is based on coordinate transformations and a wide set of numerical calculation points and their synchronization, which permits deviations from common involute geometry. As an example, the model is applied to protuberance tool profile and grinding with tip relief. A fairly low number of calculation points are needed to create tooth flank profiles where error is <1 μm.


2012 ◽  
Vol 457-458 ◽  
pp. 1025-1031 ◽  
Author(s):  
Koshiro Mizobe ◽  
Edson Costa Santos ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Katsuyuki Kida ◽  
...  

Martensitic high carbon high strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance are required. Due to its high fatigue strength, SAE 52100 is recently being used not only for the production of bearings but also shafts. Refining of prior austenite grain through repeated quenching is a procedure that can be used to enhance the material’s strength. In this work, the microstructure of repeatedly quenched SAE 52100 steel and its fatigue strength under rotating bending were investigated. It was found that repeated furnace heating and quenching effectively refined the martensitic structure and increased the retained austenite content. Repeated quenching was found to improve the fatigue strength of SAE 52100.


2021 ◽  
Author(s):  
Chao Chen ◽  
Qingong Zhu ◽  
Huanping Wang ◽  
Feifei Huang ◽  
Qinghua Yang ◽  
...  

Abstract As is well known, silicate glass has a stable glass-forming region and mature drawing processes into fibers. In this study, to obtain enhanced mechanical properties, glasses with a composition of SiO2-Al2O3-MgO-CaO-B2O3-Fe2O3 were synthesized using TiO2 and CeO2. When the amount of TiO2 and CeO2 is less than 2 wt%, the mechanical properties increase with increases in the TiO2 and CeO2. However, as the amount of TiO2 and CeO2 increases from 2 to 3.5 wt%, the mechanical properties decrease. Co-doping with 1 wt% TiO2 and 1 wt% CeO2 was found to be the optimum approach, with a density, bending strength, compression strength, and compression modulus of 2.626 g/cm3, 108.36 MPa, 240.18 MPa, and 115.03 GPa, respectively. The optical band gap and Raman spectroscopy proved that, as long as the content of oxygen bonds reaches the maximum level, a kind of best structural stability and mechanical properties will be achieved. Hence, this type of high-strength silicate glass can be used in optical fibers for military defense, wind power generation, and transportation.


2021 ◽  
pp. 1-17
Author(s):  
Luca Bonaiti ◽  
Ahmed Bayoumi Mahmoud Bayoumi ◽  
Franco Concli ◽  
Francesco Rosa ◽  
Carlo Gorla

Abstract Gear tooth breakage due to bending fatigue is one of the most dangerous failure modes of gears. Therefore, the precise definition of tooth bending strength is of utmost importance in gear design. Single Tooth Bending Fatigue (STBF) tests are usually used to study this failure mode, since they allow to test gears, realized and finished with the actual industrial processes. Nevertheless, STBF tests do not reproduce exactly the loading conditions of meshing gears. The load is applied in a pre-determined position, while in meshing gears it moves along the active flank; all the teeth can be tested and have the same importance, while the actual strength of a meshing gear, practically, is strongly influenced by the strength of the weakest tooth of the gear. These differences have to be (and obviously are) taken into account when using the results of STBF tests to design gear sets. The aim of this paper is to investigate in detail the first aspect, i.e. the role of the differences between two tooth root stress histories. In particular, this paper presents a methodology based on high-cycle multi-axial fatigue criteria in order to translate STBF test data to the real working condition; residual stresses are also taken into account


2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040014
Author(s):  
Yun-Hae Kim ◽  
Kyo-Moon Lee ◽  
Seong-Jae Park ◽  
Kyung-In Jo ◽  
Soo-Jeong Park

Prepreg technology generates air pockets at the interface of laminates under heating and pressurization. The air pockets cause defects in the through-thickness direction. This includes poor adhesion between layers, which degrades material properties. Therefore, in this study, cryogenic mechanical properties were compared to obtain uniform properties by using prepreg laminated and resin film infused glass fiber reinforced plastic (GFRP) composites (“PP-only” and “RF-only”, respectively) while maintaining the constituent contents of the fiber and polymer. Moreover, stepped repair was applied to extend the life of composites. The results demonstrated that the stiffness of the composites improved, and the brittleness increased in cryogenic environments. In the case of PP-only, numerous voids were observed inside the polymer, which showed higher bending strength than RF-only; however, it exhibited significantly lower interfacial bonding strength. When applied to secondary bonding of stepped repair, RF-only as repair layers showed high strength recovery rate in homogeneous materials, and not in heterogeneous materials. In contrast, the high strength PP-only as a parent material and RF-only as repair layers showed relatively good interfacial bonding strength due to primary damage in the PP of a parent material. Hence, the RF-only can be considered useful as a repair material.


Sign in / Sign up

Export Citation Format

Share Document