scholarly journals Research on Switching Interconnection Modes and Game Control of Interconnected Air Suspension

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3218 ◽  
Author(s):  
Sun ◽  
Lin ◽  
Geng ◽  
Li ◽  
Jiang

To solve the contradiction between handling stability and ride comfort of vehicles with interconnected air suspension system (IASS) and reduce the energy consumption of air suspension with adjustable spring stiffness, a coordinated control for dynamic performance was designed based on the logic of switching interconnection modes and game control for the damper. The control system consists of a switching controller for air suspension interconnection modes and a distribution controller for the damping force. The switching controller determines the optimal air suspension interconnection mode by calculating the vehicle dynamic performance index in real-time. The distribution controller achieves a distribution for optimal damping force based on an infinite time differential game. veDYNA software that is a vehicle dynamics analysis software based on MATLAB/Simulink was used to verify the algorithm, and the accuracy was verified by a bench test. Finally, the results show this coordinated system can significantly improve the ride comfort and restrain the pitching motion. Compared with traditional suspension, the vertical acceleration decreases by 18.32% and the dynamic stroke decreases by more than 10% under the straight condition; the vertical acceleration decreases by 12.24% and the roll angle decreases by 1.26% under the steering condition.

2020 ◽  
Vol 10 (22) ◽  
pp. 8167
Author(s):  
Mădălina Dumitriu ◽  
Dragoș Ionuț Stănică

The theoretical research on means to reduce the vertical vibrations and improve the ride comfort of the railway vehicle relies on a mechanical model obtained from the simplified representation of the vehicle, while considering the important factors and elements affecting the vibration behaviour of the carbody. One of these elements is the anti-yaw damper, mounted longitudinally, between the bogie and the vehicle carbody. The anti-yaw damper reduces the lateral vibrations and inhibits the yaw motion of the vehicle, a reason for which this element is not usually introduced in the vehicle model when studying the vertical vibrations. Nevertheless, due to the position of the clamping points of the anti-yaw damper onto the carbody and the bogie, the damping force is generated not only in the yawing direction but also in the vertical and longitudinal directions. These forces act upon the vehicle carbody, impacting its vertical vibration behaviour. The paper analyzes the effect of the anti-winding damper on the vertical vibrations of the railway vehicle carbody and the ride comfort, based on the results derived from the numerical simulations. They highlight the influence of the damping, stiffness and the damper mounting angle on the power spectral density of the carbody vertical acceleration and the ride comfort index.


2010 ◽  
Vol 97-101 ◽  
pp. 3423-3427
Author(s):  
Jun Xiu Hu ◽  
Hao Bin Jiang ◽  
Chen Long ◽  
Tao Wang

A new type adjustable hydraulic shock absorber for a bus air suspension is designed, the solenoid valve and swing pneumatic cylinder are adopted as driving device for changing damping states. The structure and work principle of the shock absorber is introduced. By applying hydrodynamic theory, a mathematical model of shock absorber’s damping characteristic is built. Several typical algorithms for calculating damping valve plate’s deflection are analyzed. Conjugate Beam Method, an approximate method with relatively less calculation work, is chosen to calculate the deflection of valve plates. Main structural parameters’ affecting on shock absorber’s damping performance are simulated, the shock absorber specimen is manufactured. The bench test results of specimen show, “hard” and “soft” damping states switch reliably, damping force deviations between test and simulation results are less than 4%. It is verified the established model for adjustable shock absorber is correct, the Conjugate Beam Method for calculating valve plates’ deflection is effective.


Author(s):  
Zhenyu Hong ◽  
Xiaoli Yu ◽  
Dongsheng Zhang ◽  
Zhenpeng He

As a rescue vehicle, damaged-aircraft trailer is used to move damaged aircraft quickly to restore the normal order of the airport. Several damaged-aircraft trailer parameters such as tire stiffness and damping of the suspension hydraulic system influence the dynamic performance significantly. In this article, a simplified 9 degrees of freedom model of damaged-aircraft trailer is established considering the physical parameters of suspension and tires. The relationships among the parameters of the suspension hydraulic components, the elastic force and damping force are established, and then the optimization model of the whole vehicle is obtained. In order to reduce the secondary damage to the aircraft, the multi-island genetic algorithm is used to optimize the suspension system and tire. During the calculation, the maximum vertical acceleration of damaged-aircraft trailer is taken as objective function for variable parameters of the suspension hydraulic system and the tire. As a result, the performance of the vehicle is greatly improved with the maximum acceleration of 0.2 m/s2 after optimization.


2011 ◽  
Vol 130-134 ◽  
pp. 2438-2442
Author(s):  
Yun Zhang ◽  
Kong Kang Zhou

The mathematical model of electric control air suspension system was built and the intelligent control strategy was put forward in this paper. Then the related simulation and the bench test of 1/4 model of electric control air suspension system were carried out, by which the influence of electric air suspension and its control system to the vehicle dynamic performance was analyzed. The test results were identical with the simulation, which demonstrated that the electric control air suspension system could improve the automobile riding comfort performance. And the research contents had laid the foundation for the future research of electric control air suspension.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


1998 ◽  
Vol 122 (2) ◽  
pp. 284-289 ◽  
Author(s):  
H. Nakai ◽  
S. Oosaku ◽  
Y. Motozono

This paper presents the development of gain-scheduled observers for semi-active suspensions. The states of the semi-active suspensions must be accurately obtained because the accuracy directly affects system performances such as ride comfort. Nonlinearity in the absorber of the semi-active suspensions is a difficult problem for estimating the accurate states using conventional linear observer theories. To solve this problem, we have designed a new gain-scheduled observer by introducing two improvements. The validity of this nonlinear observer was confirmed by simulations and experiments. The results indicate that the present observer can accurately estimate the suspension stroke velocity using the vertical acceleration sensor on the sprung mass. [S0022-0434(00)02302-9]


Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


2014 ◽  
Vol 494-495 ◽  
pp. 242-245
Author(s):  
Xin Qiang Liu ◽  
Tian Yi Yan

With the development of automotive electronics industry, the car which has electronically controlled air suspension is gained wide application. we designed an electronic control unit of automobile electronically controlled air suspension system (ECAS) including the hardware system which include the speed signal collection and processing circuit, the solenoid valve drive circuit, the CAN communication design, height detection circuit, Freescale microcontroller etc and the control strategy while propose some the basic ideas, based on Freescale microcontroller, after introducing the composition and the principle of electronically controlled air suspension. The ECAS can improve vehicle fuel economy, ride comfort and traffic-ability.


Author(s):  
Nicola Amati ◽  
Aldo Canova ◽  
Fabio Cavalli ◽  
Stefano Carabelli ◽  
Andrea Festini ◽  
...  

This article illustrates the modeling and design of electromechanical shock absorbers for automotive applications. Relative to the commonly used hydraulic shock absorbers, electromechanical ones are based on the use of linear or rotative electric motors. If electric motor is of the DC-brushless type, the shock absorber can be devised by shunting its electric terminals with a resistive load. The damping force can be modified by acting on the added resistance. An integrated design procedure of the electrical and mechanical parameters is presented in the article. The dynamic performance that can be obtained by a vehicle with electromechanical dampers is verified on a quarter car model.


Author(s):  
Jing Zhao ◽  
Pak Kin Wong ◽  
Xinbo Ma ◽  
Zhengchao Xie

This article proposes an integrated sliding mode control–two-point wheelbase preview strategy for semi-active air suspension system with gas-filled adjustable shock absorber. First of all, a vehicle suspension model with rolling lobe air spring and gas-filled adjustable shock absorber is built, following with a road input model for the front wheel. By describing the detailed structure and working process of the gas-filled adjustable shock absorber, the regulating mechanism between the stepper motor and the designed gas-filled adjustable shock absorber is established. Subsequently, the sliding mode control algorithm is applied to generate the desired damping force with the real-time state of the vehicle. Moreover, to predetermine the road profile for the rear wheel, a two-point wheelbase preview approach is proposed and its superiority is also illustrated as compared with the conventional single-point wheelbase preview approach. To evaluate the performance of the proposed system, numerical analysis is conducted with other three comparative schemes, namely, passive suspension system, active suspension system with H infinity control, and sliding mode control–controlled semi-active air suspension system with adjustable shock absorber. Simulation results show that the integrated sliding mode control–two-point wheelbase preview strategy can be successfully utilized in the semi-active air suspension system with stepper motor-driven gas-filled adjustable shock absorber, and the vehicle performance with the proposed system can be greatly improved.


Sign in / Sign up

Export Citation Format

Share Document