Study on Nonlinear Damping Properties of Hydro-Pneumatic Suspension System for XP302-Pneumatic Tyred Roller

2014 ◽  
Vol 945-949 ◽  
pp. 987-991
Author(s):  
Bang Sheng Xing ◽  
Ning Ning Wang ◽  
Le Xu

The nonlinear stiffness and damping properties of the hydro-pneumatic suspension system are introduced, and the nonlinear mathematical model of it is established. Using MATLAB 2009b to establish the computer simulation program and draw out the nonlinear stiffness curve and damping properties curve of the hydro-pneumatic suspension system. Then, researching the influences of related parameters' changes on the nonlinear stiffness and damping properties of the hydro-pneumatic suspension system. The simulation of vehicle dynamic performance research's foundation is provided.

Author(s):  
Shaohua Li ◽  
Shaopu Yang

In this work, primary resonance of a single-degree-of-freedom (SDOF) vehicle suspension system with nonlinear stiffness and nonlinear damping under multi-frequency excitations is investigated. The primary resonance equation is obtained by average method, and then the system’s bifurcation behaviors are studied by singularity theory. In addition, the effect of changing physical model parameters on the system’s primary resonance is studied.


2016 ◽  
Vol 836 ◽  
pp. 31-36 ◽  
Author(s):  
Unggul Wasiwitono ◽  
Agus Sigit Pramono ◽  
I. Nyoman Sutantra ◽  
Yunarko Triwinarno

The variable stiffness and damping (VSVD) suspension system offers an interesting option to improve driver comfort in an energy efficient way. The aim of this study is to analyze the influence of the spring ratio on the VSVD. The realization of the VSVD is obtained by the application of variable damping with magnetorheological (MR) damper. In this study, the nonlinear damping force characteristic of the MR damper is modeled with the Bouc-Wen model and the road disturbance is modeled by a stationary random process with road displacement power spectral density. It is shown from simulation that VSVD has a potential benefit in improving performance of vehicle suspension.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Dimitris I. Chortis ◽  
Dimitris S. Varelis ◽  
Dimitris A. Saravanos

This paper considers the damped small-amplitude free-vibration of composite laminated strips subject to large in-plane forces and rotations. A theoretical framework is formulated for the prediction of the nonlinear damping of composite laminates subject to large Green–Lagrange axial strains and assuming a Kelvin viscoelastic solid. An extended beam finite element is developed capable of providing the nonlinear stiffness and damping matrices of the system. The linearized damped free-vibration equations associated with the deflected strip shape in the pre- and postbuckling region are presented. Numerical results quantify the strong geometric nonlinear effect of compressive in-plane loads on the modal damping and frequencies of composite strips. Measurements of the modal damping of a cross-ply glass/epoxy beam subject to buckling were also conducted and correlate well with the finite element predictions.


2011 ◽  
Vol 130-134 ◽  
pp. 2438-2442
Author(s):  
Yun Zhang ◽  
Kong Kang Zhou

The mathematical model of electric control air suspension system was built and the intelligent control strategy was put forward in this paper. Then the related simulation and the bench test of 1/4 model of electric control air suspension system were carried out, by which the influence of electric air suspension and its control system to the vehicle dynamic performance was analyzed. The test results were identical with the simulation, which demonstrated that the electric control air suspension system could improve the automobile riding comfort performance. And the research contents had laid the foundation for the future research of electric control air suspension.


2011 ◽  
Vol 127 ◽  
pp. 252-256
Author(s):  
Qiu Fang Zhao ◽  
Man Dun Jiao ◽  
Jian Qiang Xing

In this paper, a virtual prototype model of the nonlinear vibration system is built by using the ADAMS(Automatic Dynamic Analysis of Mechanical Systems), and the simulation process of the hydro-pneumatic suspension is presented. A simulation analysis of the drive axle is done with road unevenness. The result shows that it is more important to consider the nonlinear damping than the nonlinear stiffness in the analysis of a nonlinear structure with a random response sometimes.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Babak Shafiei

AbstractSeveral authors, utilizing both experimental tests and complicated numerical models, have investigated vehicle speed's impact on a highway bridge's dynamic amplification. Although these tests and models provide reliable quantitative data on frequency contents of the interaction between the two subsystems, engineers should pay further notice to the effects of a subsystem's velocity and the type of suspension system of a vehicle moving over a structure. Hence, in this paper, the dynamic response of a bridge to a moving vehicle is considered. The car is assumed as a quarter car model with both linear and nonlinear stiffness and damping constants. Further, using the modal superposition method, a closed-form solution is obtained for the bridge's vertical response. The results obtained via numerical calculation show a significant increase in the bridge midpoint and total deflection, velocity, and acceleration by increasing the vehicle velocity. Moreover, by neglecting the nonlinear stiffness and damping coefficients of the vehicle suspension system, the bridge's dynamic response remains almost the same with respect to the numerical data. As a general conclusion, it can be claimed that the only significant parameters which can change the dynamic behavior of a bridge subjected to a moving vehicle are the speed of the car and its linear stiffness and damping constants inside its suspension system.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


Sign in / Sign up

Export Citation Format

Share Document