A Fast Reactivation Scheme in Power Gating Design

2011 ◽  
Vol 135-136 ◽  
pp. 1134-1139
Author(s):  
Ping Huang ◽  
Hui Yuan Xing ◽  
Xian Ju Yang ◽  
Pei Xiang Yan ◽  
Tian Lei Zhao ◽  
...  

Power gating has become a popular technique to reduce the ever-increasing leakage power for commercial microprocessors or SoCs, however the wakeup energy and delay cost harm its performance. This paper proposes a fast reactivation scheme to reduce the transition delay and energy. The experiment results show that, comparing to the traditional power gating implementation, it can achieve 19.66% reactivation energy reduction, 9.28% peak leakage reduction, and 23.36% wakeup delay reduction, at the cost of 2.75% area increasing.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaohui Fan ◽  
Yangbo Wu ◽  
Hengfeng Dong ◽  
Jianping Hu

With the scaling of technology process, leakage power becomes an increasing portion of total power. Power gating technology is an effective method to suppress the leakage power in VLSI design. When the power gating technique is applied in sequential circuits, such as flip-flops and latches, the data retention is necessary to store the circuit states. A low leakage autonomous data retention flip-flop (ADR-FF) is proposed in this paper. Two high-Vthtransistors are utilized to reduce the leakage power consumption in the sleep mode. The data retention cell is composed of a pair of always powered cross-coupled inverters in the slave latch. No extra control signals and complex operations are needed for controlling the data retention and restoration. The data retention flip-flops are simulated with NCSU 45 nm technology. The postlayout simulation results show that the leakage power of the ADR-FF reduces 51.39% compared with the Mutoh-FF. The active power of the ADR-FF is almost equal to other data retention flip-flops. The average state mode transition time of ADR-FF decreases 55.98%, 51.35%, and 21.07% as compared with Mutoh-FF, Balloon-FF, and Memory-TG-FF, respectively. Furthermore, the area overhead of ADR-FF is smaller than other data retention flip-flops.


10.6036/10108 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 79-84
Author(s):  
RUBAN GLADWIN ◽  
NEHRU KASTHURI

The smart Internet of Things (IoT) network relies heavily on data transmission over wireless channels. Hence, it should be designed to be robust against the attacks from hackers and antagonists. The confidentiality in IoT devices is directly proportional to the complexity and power consumption. To mitigate these issues, this paper proposes a secure Substitution Box (S-Box) design that is exploited in the IoT for cyber security applications. The S-Box is based on Gated Hybrid Energy Recovery Logic (GHERL) that is an amalgamation of two different techniques as adiabatic logic and power gating. Adiabatic logic is preferred to attain high energy efficiency in practical applications such as portable and handheld devices. Power gating technique is preferred to reduce the leakage power and energy consumption. The proposed GHERL XOR gate and S-Box are implemented with 125nm technology in Tanner EDA tool. The consequences of the experiments exhibits that the novel S-Box design with GHERL XOR decreases the power consumption by 1.76%, 35.26%, 36.81%, 41.01% and reduces the leakage power by 58.54%, 20.27%, 27.38%, 13.63% when compared with the existing techniques such as S-Box with sleep transistor, dual sleep transistor, dual-stack and sleepy keeper approach. Keywords: Adiabatic logic, Power Gating, Internet of Things, S-Box


2020 ◽  
Vol 11 ◽  
pp. 105-111
Author(s):  
K. R. Haripriya ◽  
Ajay Somkuwar ◽  
Laxmi Kumre

Leakage power consumption has been almost a serious problem these days in semiconductor industry. Many low power techniques like multi-voltage, power gating etc. are deployed to improve power saving. Power aware verification hence has become a critical issue now. Static low power verification has been developed to verify that low power architectures are designed in correct approach meeting all electrical rules in SoC. The UPF(Unified Power Format) is the standardized format that has all power intent information and can be used throughout the design flow to ensure that the power specification is intact. Firstly, this paper describes the special cells and its operation used in low power techniques. Secondly it describes the major checks examined at each stage using Synopsys VCLP tool and finally debugging with the tool and conclusion.


Sign in / Sign up

Export Citation Format

Share Document