Hydrological Frequency Calculation Method Study of Urban Rivers Runoff under Changing Environment

2012 ◽  
Vol 170-173 ◽  
pp. 2023-2026 ◽  
Author(s):  
Cui Song Yu ◽  
Xiao Na Guo

The consistency of hydrological series has been destroyed by the impact of human activities and climate change. Hydrological series is consist of certain component and random element. The random and certain components of hydrological series are identified and separated through statistic analysis. The certain element is determined by using hydrologic model while the consistancy of random element is confirmed directly by hydrological frequency curve. And then add them together. The runoff series of the Huangtai Hydrometric Station in the Xiaoqing River is for example. It proves effective and feasible and the result accord with the reality of the basin.

2018 ◽  
Vol 22 (1) ◽  
pp. 709-725 ◽  
Author(s):  
Katrina E. Bennett ◽  
Theodore J. Bohn ◽  
Kurt Solander ◽  
Nathan G. McDowell ◽  
Chonggang Xu ◽  
...  

Abstract. Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash–Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate–disturbance scenarios is at least 6–11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15–21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2516
Author(s):  
Yoonji Kim ◽  
Jieun Yu ◽  
Kyungil Lee ◽  
Hye In Chung ◽  
Hyun Chan Sung ◽  
...  

Highly concentrated precipitation during the rainy season poses challenges to the South Korean water resources management in efficiently storing and redistributing water resources. Under the new climate regime, water resources management is likely to become more challenging with regards to water-related disaster risk and deterioration of water quality. To alleviate such issues by adjusting management plans, this study examined the impact of climate change on the streamflow in the Bocheongcheon basin of the Geumgang river. A globally accepted hydrologic model, the HEC-HMS model, was chosen for the simulation. By the calibration and the validation processes, the model performance was evaluated to range between “satisfactory” and “very good”. The calibrated model was then used to simulate the future streamflow over six decades from 2041 to 2100 under RCP4.5 and RCP8.5. The results indicated significant increase in the future streamflow of the study site in all months and seasons over the simulation period. Intensification of seasonal differences and fluctuations was projected under RCP 8.5, implying a challenge for water resources managers to secure stable sources of clean water and to prevent water-related disasters. The analysis of the simulation results was applied to suggest possible local adaptive water resources management policy.


2013 ◽  
Vol 17 (8) ◽  
pp. 3219-3234 ◽  
Author(s):  
M. Konar ◽  
Z. Hussein ◽  
N. Hanasaki ◽  
D. L. Mauzerall ◽  
I. Rodriguez-Iturbe

Abstract. The international trade of food commodities links water and food systems, with important implications for both water and food security. The embodied water resources associated with food trade are referred to as "virtual water trade". We present the first study of the impact of climate change on global virtual water trade flows and associated savings for the year 2030. In order to project virtual water trade and savings under climate change, it is essential to obtain projections of both bilateral crop trade and the virtual water content of crops in each country of production. We use the Global Trade Analysis Project model to estimate bilateral crop trade under changes in agricultural productivity for rice, soy, and wheat. We use the H08 global hydrologic model to determine the impact of climatic changes to crop evapotranspiration for rice, soy, and wheat in each country of production. Then, we combine projections of bilateral crop trade with estimates of virtual water content to obtain virtual water trade flows under climate change. We find that the total volume of virtual water trade is likely to go down under climate change, due to decreased crop trade from higher crop prices under scenarios of declining crop yields and due to decreased virtual water content under high agricultural productivity scenarios. However, the staple food trade is projected to save more water across most climate change scenarios, largely because the wheat trade re-organizes into a structure where large volumes of wheat are traded from relatively water-efficient exporters to less efficient importers.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3501
Author(s):  
Hao Liu ◽  
Zheng Wang ◽  
Guangxing Ji ◽  
Yanlin Yue

Based on the Lancang River Basin (LRB) hydro–meteorological data from 1961 to 2015, this study uses the Mann–Kendall trend test and mutation test to analyze the trend of hydro–meteorological variables, as well as which year the runoff series changes, respectively. We applied the Choudhury–Yang equation to calculate the climate and catchment landscape elasticity of runoff. Then we quantified the impact of climate change and human activities on runoff change. The results show that: (1) the mean annual precipitation (P) in LRB showed an insignificant decline, the annual potential evapotranspiration (E0) showed a significant increase, and the runoff depth (R) showed a significant decrease; (2) the abrupt change of the R occurred in 2005. Both the climate and catchment landscape elasticity of runoff increased, which means that the hydrological process of LRB became more sensitive to climate changes and human activities; (3) compared with the base period (1961–2004), the reduction of P was the leading cause of runoff reduction, with a contribution of 45.64%. The contribution of E0 and human activities to runoff changes are 13.91% and 40.45%, respectively.


Author(s):  
Timothy W. Hawkins ◽  
Christopher J. Woltemade

Abstract A gridded hydrologic model was developed to assess the impact of projected climate change on future Delaware River Basin (DRB) hydrology. The DRB serves as a water supply resource to over 15 million people. Model evaluation statistics for both water year and monthly runoff projections indicate that the model is able to capture well the hydrologic conditions of the DRB. Basinwide, annual temperature is projected to increase from 2.0 to 5.5 °C by 2080–2099. Correspondingly, potential and actual evapotranspiration, precipitation, rainfall, and runoff are all projected to increase, while snowfall, snow water storage, snowmelt, and subsurface moisture are all projected to decrease. By 2080–2099, basinwide summer subsurface moisture is projected to decrease 7–18% due to increased evapotranspiration, while winter runoff is projected to increase 15–43% due to increased precipitation and snowmelt and a conversion of snowfall to rainfall. Significant spatial variability in future changes to hydrologic parameters exists across the DRB. Changes in the timing and amount of future runoff and other hydrologic conditions need to be considered for future water resource management.


Author(s):  
Fatemeh Saedi ◽  
Azadeh Ahmadi ◽  
Karim C. Abbaspour

Abstract The climate change impact on water availability has become a significant cause for concern in the Zayandeh-Roud Reservoir in Iran and similar reservoirs in arid regions. This study investigates the climate change impact on supplying water and water availability in the Zayandeh-Roud River Basin. For better management, the Soil & Water Assessment Tool (SWAT) was used to develop a hydrologic model of the Basin. The model then was calibrated and validated for two upstream stations using the SUFI-2 algorithm in the SWAT-CUP software. The impact of climate change was modeled by using data derived from five Inter-Sectoral Impact Model Intercomparison Project general circulation models under four Representative Concentration Pathways (RCPs). For calibration (1991–2008), the Nash–Sutcliffe efficiency (NSE) values of 0.75 and 0.61 at the Ghaleshahrokh and Eskandari stations were obtained, respectively. For validation (2009–2015), the NSE values were 0.80 and 0.82, respectively. The reservoir inflow would probably reduce by 40–50% during the period of 2020–2045 relative to the base period of 1981–2006. To evaluate the reservoir's future performance, a nonlinear optimization model was used to minimize water deficits. The highest annual water deficit would likely be around 847 MCM. The lowest reservoir reliability and the highest vulnerability occurred under the extreme RCP8.5 pathway.


2014 ◽  
Vol 11 (6) ◽  
pp. 5747-5791 ◽  
Author(s):  
M. Masood ◽  
P. J.-F. Yeh ◽  
N. Hanasaki ◽  
K. Takeuchi

Abstract. The intensity, duration, and geographic extent of floods in Bangladesh mostly depend on the combined influences of three river systems, Ganges, Brahmaputra and Meghna (GBM). In addition, climate change is likely to have significant effects on the hydrology and water resources of the GBM basins and might ultimately lead to more serious floods in Bangladesh. However, the assessment of climate change impacts on basin-scale hydrology by using well-constrained hydrologic modelling has rarely been conducted for GBM basins due to the lack of data for model calibration and validation. In this study, a macro-scale hydrologic model H08 has been applied regionally over the basin at a relatively fine grid resolution (10 km) by integrating the fine-resolution (~0.5 km) DEM data for accurate river networks delineation. The model has been calibrated via analyzing model parameter sensitivity and validated based on a long-term observed daily streamflow data. The impact of climate change on not only the runoff, but also the basin-scale hydrology including evapotranspiration, soil moisture and net radiation have been assessed in this study through three time-slice experiments; present-day (1979–2003), near-future (2015–2039) and far-future (2075–2099) periods. Results shows that, by the end of 21st century (a) the entire GBM basin is projected to be warmed by ~3°C (b) the changes of mean precipitation are projected to be +14.0, +10.4, and +15.2%, and the changes of mean runoff to be +14, +15, and +18% in the Brahmaputra, Ganges and Meghna basin respectively (c) evapotranspiration is predicted to increase significantly for the entire GBM basins (Brahmaputra: +14.4%, Ganges: +9.4%, Meghna: +8.8%) due to increased net radiation (Brahmaputra: +6%, Ganges: +5.9%, Meghna: +3.3%) as well as warmer air temperature. Changes of hydrologic variables will be larger in dry season (November–April) than that in wet season (May–October). Amongst three basins, Meghna shows the largest hydrological response which indicates higher possibility of flood occurrence in this basin. The uncertainty due to the specification of key model parameters in predicting hydrologic quantities, has also been analysed explicitly in this study and found that the uncertainty in estimation of runoff, evapotranspiration and net radiation is relatively less. However, the uncertainty in estimation of soil moisture is quite large (coefficient of variation ranges from 11 to 33% for three basins). It is significant in land use management, agriculture in particular and highlights the necessity of physical observation of soil moisture.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Gonghuan Fang ◽  
Jing Yang ◽  
Yaning Chen ◽  
Shuhua Zhang ◽  
Haijun Deng ◽  
...  

To study the impact of future climatic changes on hydrology in the Kaidu River Basin in the Tianshan Mountains, two sets of future climatic data were used to force a well-calibrated hydrologic model: one is bias-corrected regional climate model (RCM) outputs for RCP4.5 and RCP8.5 future emission scenarios, and the other is simple climate change (SCC) with absolute temperature change of −1~6°C and relative precipitation change of −20%~60%. Results show the following: (1) temperature is likely to increase by 2.2°C and 4.6°C by the end of the 21st century under RCP4.5 and RCP8.5, respectively, while precipitation will increase by 2%~24%, with a significant rise in the dry season and small change in the wet season; (2) flow will change by −1%~20%, while evapotranspiration will increase by 2%~24%; (3) flow increases almost linearly with precipitation, while its response to temperature depends on the magnitude of temperature change and flow decrease is significant when temperature increase is greater than 2°C; (4) similar results were obtained for simulations with RCM outputs and with SCC for mild climate change conditions, while results were significantly different for intense climate change conditions.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1458 ◽  
Author(s):  
Roya Mousavi ◽  
Mojtaba Ahmadizadeh ◽  
Safar Marofi

In this paper, the impact of climate change on the climate and discharge of the Dez Dam Basin and the hydropower potential of two hydropower plants (Bakhtiari and Dez) is investigated based on the downscaled outputs of six GCMs (General Circulation Models) and three SRES (Special Report on Emission Scenarios) scenarios for the early, mid and late 21st century. Projections of all the scenarios and GCMs revealed a significant rise in temperature (up to 4.9 °C) and slight to moderate variation in precipitation (up to 18%). Outputs of the HBV hydrologic model, enforced by projected datasets, show a reduction of the annual flow by 33% under the climate change condition. Further, analyzing the induced changes in the inflow and hydropower generation potential of the Bakhtiari and Dez dams showed that both inflow and hydropower generation is significantly affected by climate change. For the Bakhtiari dam, this indicates a consistent reduction of inflow (up to 27%) and electricity generation (up to 32%). While, in the Dez dam case, the inflow is projected to decrease (up to 22%) and the corresponding hydropower is expected to slightly increase (up to 3%). This contrasting result for the Dez dam is assessed based on its reservoir and hydropower plant capacity, as well as other factors such as the timely releases to meet different demands and flow regime changes under climate change. The results show that the Bakhtiari reservoir and power plant will not meet the design-capacity outputs under the climate change condition as its large capacity cannot be fully utilized; while there is room for the further development of the Dez power plant. Comparing the results of the applied GCMs showed high discrepancies among the outputs of different models.


2021 ◽  
Author(s):  
Jing Yang ◽  
Channa Rajanayaka ◽  
Lawrence Kees ◽  
Christian Zammit

<p>Climate and its variability have a considerable impact on seasonal water resources availability. Understanding the impact of climate change and the time lagged  response in areas where groundwater is the main water resource supporting human activity (water supply, agriculture and industry), is necessary to manage potentially damaging consequences for hydrologically-driven ecological functions, ecosystem services, economic response and adaptation, cultural values and recreation.  </p><p>In this study, we assess the impact of climate change on groundwater in Edendale area, South New Zealand, which has been experiencing increasing water abstraction pressure and declining groundwater level. We use downscaled CMIP5 IPCC climate predictions to drive a hydrologic model (TopNet) to simulate changes in land surface recharge (LSR) under different climate models and future climate scenarios (i.e. RCPs – Representative Concentration Pathways) , and then the ensemble of LSR simulations further drive the Edendale groundwater model (MODFLOW) to simulate groundwater system.</p><p>Our initial result show: in spite of differences in simulations of different climate models and future climate scenarios, to the end of this century, there will be a slight annual increasing trend both for precipitation and LSR, significantly in Autumn and less significantly in other seasons; generally groundwater level and groundwater discharge (to rivers) will be increasing, following seasonal and annual patterns of changes in precipitation and LSR; differences are large for both climate models and future scenarios, largest for RCP8.5 and smallest for RCP2.6. We hope the results will support the long-term water management planning in the Edendale area.</p>


Sign in / Sign up

Export Citation Format

Share Document