The Reliability Analysis of Multi-Operation State Repairable System

2012 ◽  
Vol 184-185 ◽  
pp. 1608-1612
Author(s):  
Rui Meng Luo ◽  
Jin Yong Yao

To describe precisely the performance characteristics of Markov repairable systems, the model of Markov repairable systems with multi-operating state was introduced. There are three kinds of states of the system: normal, abnormal and fault state. The system works when it is in the normal state and abnormal state, it stops to be mended till it is inspected and diagnosed in abnormal state or something wrong happens in it. Inspect it at intervals after it begins to work in the normal state until it is inspected and diagnosed in abnormal state or it fails. The life of the system, inspection time intervals and repairing time follow exponential distribution, we build the Markov mathematic model to the system. The steady-state reliability and the expression of steady-state yield are derived by using the Markov process method. The study of numerical examples has shown that optimal inspection strategy can increase the system economic effectiveness.

2020 ◽  
Vol 14 ◽  
Author(s):  
Gang Liu ◽  
Dong Qiu ◽  
Xiuru Wang ◽  
Ke Zhang ◽  
Huafeng Huang ◽  
...  

Background: The PWM Boost converter is a strongly nonlinear discrete system, especially when the input voltage or load varies widely, therefore, tuning the control parameters of which is a challenge work. Objective: In order to overcome the issues, particle swarm optimization (PSO) is employed for tuning the parameters of a sliding mode controller of a boost converter. Methods: Based on the analysis of the Boost converter model and its non-linear characteristics, a mathematic model of a boost converter with a sliding mode controller is built firstly. Then, the parameters of the Boost controller are adjusted based on the integrated time and absolute error (ITAE), integral square error (ISE) and integrated absolute error (IAE) indexes by PSO. Results: Simulation verification was performed, and the results show that the controllers tuned by the three indexes all have excellent robust stability. Conclusion: The controllers tuned by ITAE and ISE indexes have excellent steady-state performance, but the overshoot is large during the startup. The controller tuned by IAE index has better startup performance and slightly worse steady-state performance.


2020 ◽  
Vol 45 (3) ◽  
pp. 1069-1103
Author(s):  
Anton Braverman

This paper studies the steady-state properties of the join-the-shortest-queue model in the Halfin–Whitt regime. We focus on the process tracking the number of idle servers and the number of servers with nonempty buffers. Recently, Eschenfeldt and Gamarnik proved that a scaled version of this process converges, over finite time intervals, to a two-dimensional diffusion limit as the number of servers goes to infinity. In this paper, we prove that the diffusion limit is exponentially ergodic and that the diffusion scaled sequence of the steady-state number of idle servers and nonempty buffers is tight. Combined with the process-level convergence proved by Eschenfeldt and Gamarnik, our results imply convergence of steady-state distributions. The methodology used is the generator expansion framework based on Stein’s method, also referred to as the drift-based fluid limit Lyapunov function approach in Stolyar. One technical contribution to the framework is to show how it can be used as a general tool to establish exponential ergodicity.


Author(s):  
Z. H. Jiang ◽  
L. H. Shu ◽  
B. Benhabib

Abstract This paper approaches environmentally conscious design by further developing a reliability model that facilitates design for reuse. Many reliability models are not suitable for describing systems that undergo repairs performed during remanufacture and maintenance because the models do not allow the possibility of system reconfiguration. In this paper, expressions of reliability indices of a model that allows system reconfiguration are developed to enable life-cycle cost estimation for repairable systems. These reliability indices of a population of repairable systems are proven theoretically to reach steady state. The expressions of these indices at steady state are obtained to gain insight into the model behavior, and to facilitate life-cycle cost estimation.


Author(s):  
Masahiro Ishibashi

It is shown that critical flow Venturi nozzles need time intervals, i.e., more than five hours, to achieve steady state conditions. During these intervals, the discharge coefficient varies gradually to reach a value inherent to the pressure ratio applied. When a nozzle is suddenly put in the critical condition, its discharge coefficient is trapped at a certain value then afterwards approaches gradually to the inherent value. Primary calibrations are considered to have measured the trapped discharge coefficient, whereas nozzles in applications, where a constant pressure ratio is applied for a long time, have a discharge coefficient inherent to the pressure ratio; inherent and trapped coefficients can differ by 0.03–0.04%.


2018 ◽  
Vol 25 (s3) ◽  
pp. 36-42
Author(s):  
Yanzhe Hu ◽  
Mengjie Xu ◽  
Yang Li

Abstract In order to discuss the simulation model of the ship transmission line and the state of the transmission line, an early fault model is built according to the evolution principle of the short circuit fault of the transmission line and combining with the fault characteristics of the early fault. A small distributed ship transmission line system is built in MATLAB/ Simulink. Then, combined with the constructed fault module, the original short circuit module, and the load module, the various states (normal state, early fault state, severe early fault state, short circuit state) of the ship transmission line are stimulated, and the features of voltage signal in each state is analysed. It is concluded that, due to the normal operation of the ship transmission line system, the variation characteristics of the flow signal and voltage signal caused by the sudden load mutation, that is, the sudden load and the sudden increase load, are very similar to the changes caused by the early fault. Therefore, in order to find a more accurate early fault detection method, the state is divided into normal state, sudden load state, sudden increase and sudden decrease load state.


1982 ◽  
Vol 17 (3) ◽  
pp. 123-132 ◽  
Author(s):  
K D Al-Faddagh ◽  
R T Fenner ◽  
G A Webster

The paper describes a procedure, based on a finite element method, for calculating directly the steady-state stress distribution in circumferentially notched bars subjected to creep without the need for obtaining solutions at intermediate time intervals. Good agreement is obtained with relevant approximate plasticity solutions and with numerical calculations which approach the steady-state over a period of time from the initial elastic stress distribution. Also, the procedure is equally applicable to primary, secondary, and tertiary creep, provided the variables of stress and time are separable in the creep law. Results obtained for a range of notch geometries and values of the stress index, n, are reported. It is found for each profile that a region of approximately constant effective stress, σ, independent of n, is obtained which can be used to characterise the overall behaviour of the notch throat region when a steady-state is reached sufficiently early in life. An approximate method for estimating the maximum equivalent steady-state stress across the notch throat is also presented which does not require a computer solution.


2011 ◽  
Vol 391-392 ◽  
pp. 894-899
Author(s):  
Shi Li ◽  
Yan Hu ◽  
Xi Ju Zong

An intensified continuous mini-reactor is introduced, to replace traditional discontinuous reactor, using in three-phase catalytic slurry hydrogenation. Under high pressure intensification, continuous mini-reactor behaves excellent performances of mass transfer and heat transfer, and presents the advantages of smaller volume, faster reaction rates, higher conversion and no solvent addition. The steady-state mathematic model is established, and the characteristic times of mass transfer and heat transfer are analyzed based on mass balance and energy balance Eq.s, the results can efficiently help the reactor design and optimization.


Sign in / Sign up

Export Citation Format

Share Document