Effects of Ar Gas Pressure on Characterization of Nano-Structured Silver Films Deposited on the Surface of Polyester Fabric

2012 ◽  
Vol 189 ◽  
pp. 105-109 ◽  
Author(s):  
Xin Min Huang ◽  
Qian Wen Wang ◽  
Yue Li Li

The silver films of nano-structured are prepared by magnetron sputtering on the surface of polyester plain weave fabric,The effect of vacuum pressure on the morphology of the nano-structured silver films,anti-UV and the conductivity of samples deposited with silver films is investigated.Results of experiments show that the surface roughness of silver film with substrate for plain weave fabric is biggest, particle size is largest and particles formed on the surface of films is distinctest when pressure is 0.6Pa,but the conductivity of silver film is optimum when pressure is 0.3Pa; The samples deposited with silver films show better UV absorption, Ar gas pressure has no obvious influence on the samples shielding UV radiation.

2020 ◽  
Vol 68 (4) ◽  
pp. 4-11
Author(s):  
Koviljka Asanović ◽  
Tatjana Mihailović ◽  
Mirjana Kostić ◽  
Iva Gajić ◽  
Aleksandra Ivanovska

In this paper, the influence of thermal fixation of woven interlining on the quality of woven fabrics, evaluated from the aspect of their dc volume electrical resistivity, was investigated. The plain weave fabrics made from cotton, flax, viscose, polyester, and cotton/polyester blends and 3/1S twill weave fabric obtained from cotton and polyester fibers blend were investigated. A cotton fabric with a point-applied thermoplastic binder was used as an interlining. The obtained results showed that the dc volume electrical resistivity of fabrics is influenced by their chemical composition, type of weave, type of yarn, fabric density which is especially pronounced in the interlining, the process of thermal fixation of the interlining, and ambient air humidity. The thermal fixation of the woven interlining greatly reduces the dc volume electrical resistivity of polyester fabric (499 times in the warp direction and 860 times in the weft direction), and increases the resistivity of other fabrics in the range of 1.3 times for viscose fabric and fabric obtained from cotton and polyester fibers blend in plain weave to 3.9 times for twill weave fabric. Based on the conducted investigation, it can be concluded that the quality of the tested fabrics evaluated from the aspect of their electrical resistivities, was significantly improved in the case of polyester fabric i.e worsens in the other investigated fabrics after thermal fixation of the woven interlining.


1997 ◽  
Vol 19 (2) ◽  
pp. 77 ◽  
Author(s):  
WS Johnson ◽  
JE Masters ◽  
DW Wilson ◽  
VK Ganesh ◽  
NK Naik

2005 ◽  
Vol 475-479 ◽  
pp. 949-952
Author(s):  
S.W. Kim ◽  
J.S. Park ◽  
K.K. Kim ◽  
Dong Ki Kim ◽  
Kee Do Woo

This study was to aimed to investigate on the sliding wear behaviors at both ambient and elevated temperatures in Al/SiCp composites fabricated by the newly developed duplex process. Wear test using wear tester of pin-on-disc type was carried out under the conditions of load 100N , velocity 0.64m/s, distance 4000m. The sliding wear behaviors under the conditions of ambient temperature, 200°C and 200°C-Ar gas and microstructures were studied using OM and SEM. The results obtained from this study are as follows; Wear amount decreased with the decrease in particle size. The wear resistance at 200°C-Ar on composites was greater than those at 200°C and room temperature in the as-composites.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 158
Author(s):  
Zhong Tian ◽  
Han Yan ◽  
Qing Peng ◽  
Lin Jay Guo ◽  
Shengjun Zhou ◽  
...  

Ultra-thin and continuous metallic silver films are attracting growing interest due to the applications in flexible transparent conducting electrodes. The surface morphology and structure of silver film are very important for its electrical resistivity and optical loss. Therefore, roughness control is essential for the production of ultra-thin metallic electrode film. We have investigated the effect of aluminum doping on the improvement of surface morphology of ultra-thin silver films using molecular dynamics simulations. Al-doped silver films showed smaller surface roughness than pure silver films at various substrate temperatures. When the temperature of the substrate was 600 K, the roughness of Al-doped silver film first decreased, and then increased with the increase of the incident velocity of silver atoms. Silver atoms were more likely to agglomerate on the surface of the substrate after adding aluminum atoms, as aluminum dopants promoted the immobilization of silver atoms on SiO2 substrate due to the anchoring effect. The smoother surface could be attributable to the reduced mean free path of silver due to the cage effect by the aluminum dopant.


Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 869
Author(s):  
Minghua Wei ◽  
Shaopeng Wu ◽  
Haiqin Xu ◽  
Hechuan Li ◽  
Chao Yang

Steel slag is the by-product of the steelmaking industry, the negative influences of which prompt more investigation into the recycling methods of steel slag. The purpose of this study is to characterize steel slag filler and study its feasibility of replacing limestone filler in asphalt concrete by evaluating the resistance of asphalt mastic under various aging methods. Firstly, steel slag filler, limestone filler, virgin asphalt, steel slag filler asphalt mastic and limestone filler asphalt mastic were prepared. Subsequently, particle size distribution, surface characterization and pore characterization of the fillers were evaluated. Finally, rheological property, self-healing property and chemical functional groups of the asphalt mastics with various aging methods were tested via dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that there are similar particle size distributions, however, different surface characterization and pore characterization in the fillers. The analysis to asphalt mastics demonstrates how the addition of steel slag filler contributes to the resistance of asphalt mastic under the environment of acid and alkaline but is harmful under UV radiation especially. In addition, the pore structure in steel slag filler should be a potential explanation for the changing resistance of the asphalt mastics. In conclusion, steel slag filler is suggested to replace limestone filler under the environment of acid and alkaline, and environmental factor should be taken into consideration when steel slag filler is applied to replace natural fillers in asphalt mastic.


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1952-1959
Author(s):  
Yi Zhao ◽  
Fangfang Peng ◽  
Yangchuan Ke

Emulsion with small particle size and good stability stabilized by emulsifiers was successfully prepared for EOR application.


Sign in / Sign up

Export Citation Format

Share Document