Study on Influence Factors of Rubber Concrete Compressive Strength

2012 ◽  
Vol 204-208 ◽  
pp. 4177-4180
Author(s):  
Wei Wu ◽  
Chao Zhang ◽  
Yong Li

Rubber is mixed into concrete replacing sand, gravel and both sand and gravel with the same volume. Test compressive strength change trend of 7d and 28d concrete mixed into different volume rubber of 20 mesh, 40 mesh, 60 mesh and 80 mesh and study influence of different way, powder size and dosage on rubber concrete compressive strength. The results show that tenacity, cracking resistance and failure characters of rubber concrete are significantly better than that of ordinary concrete and that compressive strength of rubber concrete declines with increase of rubber dosage.

2017 ◽  
Vol 7 (6) ◽  
pp. 2210-2214 ◽  
Author(s):  
A. Saand ◽  
M. A. Keerio ◽  
D. K. Bangwar

Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan) is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.


2013 ◽  
Vol 639-640 ◽  
pp. 325-328
Author(s):  
Yan Jia Guo ◽  
Zhu Li ◽  
Yuan Zhen Liu ◽  
Shang Song Qin

Based on the compressive strength, the thermal conductivity, the elastic modulus and the steel bond strength of thermal insulation glazed hollow bead concrete, referring to the carbonation mechanism and the influence factors of the ordinary concrete, considering the impact of raw materials and the influence of construction technology, the study on thermal insulation glazed hollow bead concrete anti-carbonation was proposed. From the test results, it can conclude that for the same intensity level, the anti-carbonation capacity of the thermal insulation glazed hollow bead concrete is better than that of the ordinary concrete. For different strength grade of thermal insulation glazed hollow bead concrete, to some extend, the higher the intensity level is, the stronger the ability of thermal insulation glazed hollow bead concrete anti-carbonation is.


2013 ◽  
Vol 433-435 ◽  
pp. 2016-2019
Author(s):  
Qun Yu ◽  
Wen Chao Ye

Experimental studies on the compressive strength and frost resistance of rubber concrete during different maintenance period have been carried through in this paper. The results show that: the concrete compressive strength reduces with the incorporation of rubber particles, but its frost resistance increases, and with the growth of the maintenance period, its compression performance increases; however, its frost resistance remained unchanged.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4706
Author(s):  
Danyang Su ◽  
Jianyong Pang ◽  
Xiaowen Huang

In order to enhance the corrosion resistance of concrete to chloride salt, 5% NaCl solution was used to corrode ordinary concrete (OC) and rubber concrete (RC) with 5%, 10%, and 15% rubber content, respectively. By testing the compressive strength, mass, chloride ion concentration at different depths and relative dynamic elastic modulus, the erosion mechanism was analyzed by means of SEM scanning and EDS patterns, and the mechanical properties and deterioration degree of ordinary concrete (OC) and rubber concrete (RC) under the corrosion environment of chloride salt were studied. The results show that: the quality of rubber mixed into concrete increases first and then decreases, and rubber can increase the compressive strength of concrete, improve its internal structure. At the same time, the mechanical properties of concrete in the corrosion environment of chloride salt are improved to a certain extent, and the deterioration degree is reduced. Considering the comprehensive performance of OC and RC in the dry–wet alternation mechanism under chloride salt corrosion, the best content of rubber is 10%.


2019 ◽  
Vol 9 (17) ◽  
pp. 3582 ◽  
Author(s):  
Guofang Chen ◽  
Mingqian Yang ◽  
Longjun Xu ◽  
Yingzi Zhang ◽  
Yanze Wang

Graphene nanoplatelets (GNP) is a newly nanomaterial with extraordinary properties. This paper investigated the effect of GNP on the addition on freeze–thaw (F–T) resistance of concrete. In this experimental study, water to cement ratio remained unchanged, a control mixture without GNP materials and the addition of GNP was ranging from 0.02% to 0.4% by weight of ordinary Portland cement was prepared. Specimens were carried out by the rapid freeze-thaw test, according to the current Chinese standard. The workability, compressive strength, visual deterioration and mass loss of concrete samples were evaluated. Scanning electron microscopy also applied in order to investigate the micromorphology inside of the concrete. The results showed that GNP concrete has a finer pore structure than ordinary concrete; moreover, the workability of GNP concrete reduced, and the compressive strength of specimens was enhanced within the appropriate range of GNP addition; in addition, GNP concrete performed better than the control concrete in the durability of concrete exposed to F-T actions. Specimens with 0.05% GNP exhibited the highest compressive property after 200 F–T cycles compared with other samples.


2010 ◽  
Vol 168-170 ◽  
pp. 2214-2218
Author(s):  
Xin Yuan Jiang ◽  
Jian Xin Zhao

Aminobenzenesulfonic-based superplasticizer is a kind of high range water reducer synthesized by sodium aminosulfonate, phenol and formaldehyde, as the expensive phenol and the bad workability of concrete added with it, so its application is limited. Bamboo tar is one of the byproducts from bamboo charcoal production, and for its complicated components it isn’t utilized effectively until now. Crude phenols extract was obtained from bamboo tar by using sodium hydroxide solution, and the synthesis of modified aminobenzenesulfonic-based superplasticizer by using crude phenols extract to substitute part of phenol was optimized, and the fluidity of cement paste, compressive strength and water-reducing rate of concrete added superplasticizers were also determined in this paper. The research results indicated that the fluidity of cement paste, concrete compressive strength during the same period, the water-reducing rate and the workability of concrete added with modified aminobenzenesulfonic-based superplasticizer synthesized by using crude phenols extract to substitute 10% phenol were better than that added with aminobenzenesulfonic -based superplasticizer synthesized by only phenol.


2011 ◽  
Vol 374-377 ◽  
pp. 1641-1645
Author(s):  
Bo Zhang ◽  
She Liang Wang ◽  
Yuan Fang Du ◽  
Long Ping Jing

Crush value index is a key parameter for measurement of coarse aggregate strength performance. In this paper the eight group of crush value index are tested for the recycled aggregate used of waste concrete which is gathered from three different remove construction plants. The experiment analysis result is shown that the crush value of recycled aggregate is greater 2.5 times than natural aggregate. Meanwhile, compared with air dried condition, the crush value index of saturated face dried condition is from 7.22% to18.2%. Furthermore the recycled aggregate can be suitable to make concrete requirement which compression strength grade is C35 and lower than C35 in China. In the experiment, comparative analysis is found that the RA-10 aggregate compressive strength is slightly from 2.06% to 8.7%. Those which are higher limit value of standard for test method of mechanical properties on ordinary concrete and the divergence are less than 10%. Consequently the recycled aggregate can be used for concrete, and its compressive strength is also fundamentally satisfied for requirement of concrete compressive strength.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012062
Author(s):  
Mustaqqim Abdul Rahim ◽  
Lim Jiann Jonq ◽  
Afizah Ayob ◽  
Shamilah Anudai Anuar ◽  
Nor Faizah Bawadi ◽  
...  

Abstract The aim of the study is to study the physical and mechanical characteristics of Slurry Infiltrated Fiber Reinforced Concrete with fiber percentage volume of 5% and lower. For the testing of physical characteristics of the concrete, density test been conducted. For the testing of mechanical characteristics, compression test used to determine strength of concrete sample. The density of Slurry Infiltrated Fiber Reinforced Concrete increased when the usage of steel fiber percentage volume increases from 1% to 5%, nevertheless when compared to density of ordinary concrete, ordinary concrete is denser. For the significant of study, the mechanical properties of Slurry Infiltrated Fiber Reinforced Concrete, compressive strength increased when the fiber content increases from 1% to 5% percentage volume.


Author(s):  
Xiaosa Yuan ◽  
Li Zhang ◽  
Xinxiao Chen ◽  
Fang Liu

Abstract To study the effects of graphene oxide (GO), fly ash, and steel fiber on the mechanical properties and durability of concrete, the mechanical properties, frost resistance, and internal pore structure of modified concrete are investigated by compression tests, freeze–thaw cycle tests, and industrial computed tomography (CT) tests. The test results show that the compressive strength of concrete with GO is better than that of mixed concrete, concrete mixed with only steel fiber, and ordinary concrete. Further, it is strongest at all ages when the GO content is 0.03%; the compressive strength of mixed concrete with 30% of fly ash is generally better than that with 15% and 45% of fly ash. In general, the frost resistance of concrete with only GO is better than that of ordinary concrete. With the increase in fly ash content, the internal porosity of concrete decreases, and its compressive strength increases accordingly; as GO increases, the porosity decreases and then increases, with the lowest porosity and the highest compressive strength of concrete at 0.03% of GO. With an increase in porosity, the mass loss and relative dynamic elastic modulus of concrete increase after 100 freeze–thaw cycles, which indicates that porosity directly affects the frost resistance of concrete.


2012 ◽  
Vol 204-208 ◽  
pp. 2990-2993 ◽  
Author(s):  
Wei Zi ◽  
Zhi Wu Yu ◽  
Peng Liu ◽  
Zuo Shan Li

The mechanical properties of C40 ordinary concrete after different temperature and time were experimentally researched. A detailed review of experimental phenomena and the influence of the significant parameters were given, and the relationship between the compressive strength and temperature and time were discussed. The experiment showed that with the exposure of temperature and time increasing, the concrete cubic compressive strength tends to decrease generally. According to the experiment results, the formula for strength-temperature-time relationship after the fire was built. According to the coupling effects of temperature and time to the compressive strength, a new fire size classification standard was established.


Sign in / Sign up

Export Citation Format

Share Document