Prediction of Heat Dissipation Effect by Simulating Radiator Group of Mining Dump-Truck

2012 ◽  
Vol 217-219 ◽  
pp. 2473-2479 ◽  
Author(s):  
Zun Jin Fan ◽  
Zheng Qi Gu ◽  
Shui Chang Liu

This paper is concerned with prediction of heat dissipation effect by establishing a 3d geometric model of the radiator group for a ribbon-tubular radiator of a mining dump-truck. By using the CFD approach the airflow characteristics of the radiator group are numerically calculated, and the resistance characteristic and heat transfer performance are analyzed thus the matching point of the fan is calculated, and the heat transfer performance of the water-side is simulated. Then, according to the relative heat transfer theory, the inlet and outlet water temperature of the radiator group under idling condition is obtained by analytical method. The experiment is done subsequently. The maximum deviation rate between the results of the simulation and the experiment is 6.4%, which can meet the engineering requirement and well predicts the heat dissipate performance of the radiator group. The result indicates that by combining the CFD numerical simulation with the analytical method the heat dissipation of the radiator group can be predicted effectively.

2012 ◽  
Vol 197 ◽  
pp. 216-220
Author(s):  
Zhong Chao Zhao ◽  
Rui Ye ◽  
Gen Ming Zhou

To solve the cooling problem in modern electronic device, a kind of heat pipe radiator was designed and manufactured in this paper. The heat transfer performance of heat pipe radiator and its relationship with air velocity were investigated by experimental method. The experimental results show that the heat pipe radiator can meet the temperature requirement of electronic device with the power range from 40W to 160W. To keep the operational temperature of electronic device with power of 160W under 75°C,the air velocity should be keep at 1.7m/s. The heat dissipation performance of heat pipe radiator was enhanced with the air velocity increased from 0.2m/s to 1.7m/s.for the electronic equipment with power of 160W.


2020 ◽  
Vol 165 ◽  
pp. 06048
Author(s):  
Fumin Shang ◽  
Chaoyue Liu ◽  
Qingjing Yang ◽  
Yifang Dong ◽  
Weijia Cao ◽  
...  

With the continuous development of industrial technology, the safety and efficiency of thermal equipment work in related industries and industrial fields are facing many problems. First, with the improvement of integrated level, the size of electronic components is getting smaller and smaller, and the heat load per unit area is increasing, which makes the traditional heat dissipation method difficult to meet the requirements; second, with the increase of energy-saving pressure, the temperature difference of low-temperature waste heat recovery is reduced, and the traditional heat exchange equipment is difficult to meet the working requirements. The pulsating heat pipe has the characteristics of small volume and excellent heat transfer performance. In view of the heat transfer performance of the pulsating heat pipe, we designed the gas-liquid pulsating heat pipe heat exchanger and studied its heat transfer performance, which has been verified to be effective.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2193 ◽  
Author(s):  
Jianhua Xiang ◽  
Haoxing Zheng ◽  
Yipin Wang ◽  
Chunliang Zhang ◽  
Chao Zhou ◽  
...  

Thermal management is crucial to guarantee the normal operation of light-emitting diodes (LEDs) Phase change heat sink is superior to traditional metal solid heat sink due to very small thermal resistance. In this study, a new type of phase change heat sink for high power LEDs is first designed. Then, the fabrication process of boiling structures at the evaporation surface of the phase change heat sink is discussed and analyzed. To make a comparison and deep discussion, the machining process is simulated through the FEM (finite element analysis) software, DEFORM-3D. Last but not least, heat transfer performance of the fabricated phase change heat sink is tested. Results have shown that the designed new type of phase change heat sink has superior heat transfer performance and is suitable for heat dissipation of high-power LEDs.


2020 ◽  
Vol 165 ◽  
pp. 06035
Author(s):  
Fumin Shang ◽  
Qingjing Yang ◽  
Chaoyue Liu ◽  
Shilong Fan ◽  
Jianhong Liu

To meet the requirement of electronic heat dissipation with high heat flux, a kind of heat dissipation device using pulsating heat pipe (PHP) for CPU heat dissipation was put forward. The heat transfer performance and surface temperature distribution of the radiator are analyzed by analyzing the wall temperature distribution and the distribution of the evaporator and condenser of the PHP. The experimental results show that the change of wind speed has obvious influence on the operation of the PHP radiator. The surface temperature distribution of the PHP radiator is very uniform, which is especially beneficial for CPU cooling. The heat transfer performance of the PHP is better, and the minimum average thermal resistance is 0.19 k/W. In addition, there is no drying phenomenon when the temperature reaches about 120 °C, which indicates that the pulsating heat pipe has a very high heat transfer limit.


2019 ◽  
Vol 9 (14) ◽  
pp. 2818 ◽  
Author(s):  
Shouguang Yao ◽  
Zecheng Teng

At present, there are many applications of nanofluids whose research results are fruitful. Nanofluids can enhance the critical heat flux, but the effect on boiling heat transfer performance still has disagreement. Base liquids with higher viscosity improve the boiling heat transfer performance of nanofluids. When the base liquid is a multicomponent solution, the relative movement between the different solutions enhances the microscopic movement of the nanoparticles due to the different evaporation order during the boiling process, so that the boiling heat transfer performance is enhanced. Compared with the thermal conductivity of the heated surface, the deposition of the low thermal conductivity nanoparticles reduces the heat dissipation rate of the heated surface and improves the wall superheat. Then the enhancement of the boiling heat transfer coefficient should be attributed to the thermal conductivity improvement of base fluid and the bubble disturbance resulted from the nanoparticle’s microscopic motion.


Author(s):  
Fu-Min Shang ◽  
Qing-Jing Yang ◽  
Jian-Hong Liu

Abstract According to the characteristics of heat dissipation process and the structural characteristics of traditional heat dissipation device, pulsating heat pipe (PHP) and traditional The pin-finned heat sink are used to simulate the cooling process of CPU, so as to meet the cooling requirements of computer CPU. By comparing the heat transfer perform of the two heat sinks under three conditions: the top wall temperature of the heat sink, the wall temperature of the heat sink and the temperature difference between the inlet and outlet of hot water, it can be found that the heat transfer performance of the PHP radiator is better. The experimental results show that in order to further improve the heat dissipation performance of the computer CPU, the CPU radiator device can be manufactured by the PHP device, and the PHP technology has broad application prospects in electronic heat dissipation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fei Chen ◽  
Chao Wang ◽  
Ke Yan ◽  
Muhammad Azeem Ghouri ◽  
Yongsheng Zhu  ◽  
...  

Purpose This paper aims to analyze the temperature field and the heat transfer performance of the counter rotating dual rotor bearings (CRDRB) based on the air phase flow field at different speeds to provide effective support for the lubrication and the thermal design of CRDRB. Design/methodology/approach In this study, taking H7006C angular contact ball bearing as an example, based on the flow visualization technique and the thermal analysis methods, the effects of outer ring speed on the air phase flow field, the temperature field and the heat transfer in bearing cavity were investigated. Findings Results indicated that there were more complex turbulent air vortices in CRDRB cavity. Turbulent cyclones in critical contact zone reduced the heat dissipation capacity of air. Compared with single rotor bearing with a static outer ring, the average heat transfer coefficient reduced by 11.78% and the average temperature raised by 3.06 K inside CRDRB cavity. Under the influence of outer ring rotation, the high temperature area in ball-inner raceway contact zone and pocket raised and reduced by 160.13% and 30.48%, respectively. The outer ring rotation had opposite effect on the heat dissipation of raceway contact zone and pocket. Originality/value The air phase flow field characteristics and the heat transfer performance of CRDRB were revealed and analyzed from the mechanism. An area quantification method was presented as an auxiliary mean of the thermal analysis to evaluate the heat transfer performance of bearing.


Author(s):  
Ravin G. Naik ◽  
Arvind S. Mohite ◽  
Juneyd F. Dadi

The demand for more powerful engines in smaller hood spaces has created a problem of insufficient rates of heat dissipation in automotive radiators. Insufficient heat dissipation can result in the overheating of the engine, which leads to the breakdown of lubricating oil, metal weakening of engine parts, and significant wear between engine parts. To minimize the stress on the engine as a result of heat generation, automotive radiators must be redesigned to be more compact while still maintaining high levels of heat transfer performance. Moreover, this can be done without significant modification to the existing internal radiator structure, this can be done by increasing (i) heat transfer area, (ii) temperature, and (iii) heat transfer co-efficient. However, technologies have already reached their limit for the cases heat transfer area and temperature. Recently many researchers found that dispersing nano-sized particles into the liquids result in higher heat transfer co-efficient of these newly developed fluids called nanofluids compared to the traditional liquids. This kind of fluids are now of great interest not only for modifying heat transfer performance of fluids, but also for improving other different characteristics such as mass transfer and rheological properties of fluids. A major goal of the nanofluids project is to reduce the size and weight of the vehicle cooling systems by greater than 10% despite the cooling demands of higher power engines. Nanofluids enable the potential to allow higher temperature coolants and higher heat rejection in the automotive engines. It is estimated that a higher temperature radiator could reduce the radiator size approximately 30%. In this paper we have considered two nanofluids comprising of aluminium oxide and copper oxide in water mixture has been studied experimentally to compare their performance in automobile radiator. The study shows that for a particle volume concentration of 0.1%, both nano fluids show improvements in their performance over the base fluid. Comparison has been made on the basis of three important parameters; equal mass flow rate, equal air flow rate and equal radiator inlet temperature of coolant. For both nanofluids exhibit increase in heat transfer rate compared to base fluid.


Author(s):  
Youmin Xi ◽  
Jianzu Yu ◽  
Yongqi Xie ◽  
Hongxia Gao

High maneuverability has been a major performance index of modern military combat flight. Thus, the avionics installed on the flight will frequently suffer the effects of acceleration. The flow and heat dissipation performance of avionics heat sink will be affected by the super gravity environment. In order to clarify the effects of acceleration, simulative accelerating experiments of flow and heat transfer performance in straight microchannel with rectangular cross section have been conducted. A test piece made of copper is machined. FC-72 is taken as coolant. Simulative accelerating equipment is set up, on which the test piece is installed. Several different acceleration conditions are applied in the experiment. The resulting centripetal acceleration ranged from 0g to 15g. Tests are conducted by varying heat load, flow flux, and microchannel orientation relative to the direction of the accelerating force. In this study, new experimental data is presented. The flow and heat transfer performance in straight microchannel under the effects of acceleration is analyzed. The result shows that the directions and amplitudes of the acceleration have great effects on flow and heat transfer performance in the channel.


Sign in / Sign up

Export Citation Format

Share Document