Study of a Low Insertion Loss SAW Filter with SPUDT Structure Using YZ-LiNbO3

2012 ◽  
Vol 251 ◽  
pp. 139-142 ◽  
Author(s):  
Hua Jiang ◽  
Wen Ke Lu ◽  
Shi Gen Shen ◽  
Zheng Guang Xie

To meet the demand for low insertion loss, we have studied a SAW filter with single phase unidirectional transducer (SPUDT) structure using piezoelectric materials YZ-LiNbO3. This article shows the simulation results of the SAW filter using Matlab software with the SAW velocity 3488m/s and electromechanical coupling constant 0.048. The theoretical center frequency is 72MHz and the 3dB bandwidth is 2.9MHz. The total frequency response of the entire SAW device is the product of the frequency response of the input transducer and the output transducer. It can be seen from the simulation results that the magnitude response and the linear phase response of interdigital transducer are consistent with the theoretical values and the minimum insertion loss reaches 5.43dB. So the low insertion loss SAW filter with SPUDT structure using YZ-LiNbO3 adapts the requirements of the radar, communications and other electronic systems.

2021 ◽  
Vol 11 (16) ◽  
pp. 7500
Author(s):  
Xueping Sun ◽  
Shaobo Ge ◽  
Xiuting Shao ◽  
Shun Zhou ◽  
Wen Wang ◽  
...  

Electrode-width-controlled (EWC) single-phase unidirectional transducers (SPUDT) contribute to reduction of insertion loss of surface acoustic wave (SAW) devices due to their strong unidirectional properties. In this work, we propose a method to optimize the unidirectionality of EWC-SPUDT based on our research results that the unidirectionality of the EWC-SPUDT cell is strongly related to its reflectivity and its unidirectional angle. Furthermore, in order to ensure strong unidirectionality to achieve low insertion loss, a simulator based on the finite element method (FEM) is used to study the relationship between geometrical configuration of the EWC-SPUDT cell and its reflection coefficient, as well as its transduction coefficient. Simulation results indicate that the reflection coefficient of the optimized EWC-SPUDT cell composed of 128° YX lithium niobite (LiNbO3) substrate and Al electrodes with thickness of 0.3μm reaches the optimal value of 5.17% when the unidirectional angle is designed to be −90°. A SAW delay line is developed with the optimized EWC-SPUDT cell without weighing, and the simulation results are verified by experiments. The experimental results show that the directivity exceeds 30 dB at the center frequency and the insertion loss is just 6.7 dB.


2018 ◽  
Vol 38 ◽  
pp. 03039
Author(s):  
Chang Zhou ◽  
Chen Ji ◽  
Gen Ping Wu

A technique for tunable filters with low insertion loss and narrow bandwidth is proposed in the form of comb-line structure. Both resonant capacitor with pin-diodes and resonant inductance in the tunable filter were analyzed and the main source of insertion loss was obtained. A series of filters with same pin-diodes, center frequency, absolute bandwidth and low return loss was simulated. The results showed that, by changing the values of the resonant capacitor and inductance, insertion loss of the filter can be greatly restricted. This technique will allow the design of tunable LC filters with low insertion loss and narrow bandwidth.


2020 ◽  
Vol 20 (1) ◽  
pp. 73-79
Author(s):  
Girdhari Chaudhary ◽  
Yongchae Jeong

This paper presents a design of a transmissive-type, low insertion loss (IL) negative group delay (NGD) circuit with a reconfigurable NGD. The proposed circuit consists of a series transmission lines (TLs) and shunt short-circuited coupled lines where an isolation port is terminated with a parasitic compensated PIN diode. Analytical design equations are derived to obtain the circuit parameters for the predefined NGD and IL. The low IL can be achieved because of the very high characteristic impedance of the short-circuited coupled lines. The TL terminated with a PIN diode is used to achieve the constant center frequency of reconfigurable NGD circuit. For experimental validation, the NGD circuit is designed and fabricated at a center frequency (<i>f</i><sub>0</sub>) of 2.14 GHz. In the measurement, the NGD varies from -0.5 ns to -2 ns with an IL variation of 2.08 to 3.60 dB at <i>f</i><sub>0</sub> = 2.14 GHz. The NGD bandwidth (bandwidth of GD less than 0 ns) varies from 90 MHz to 50 MHz. The minimum input/output return losses are higher than 10 dB for the overall tuning range.


Author(s):  
Vishal Singh

The limited lifespan in portable, remote and implantable devices and the need to recharge or replace batteries periodically has been a consistent issue. Ambient energy can usually be found in the form of thermal energy, vibrational energy and solar energy. Among these energy sources, vibrational energy presents a constant presence in nature and artificial structures. Energy harvesting through piezoelectric materials by extracting power from ambient vibrations is a promising technology. The material is capable to harvest sufficient energy required to make autonomous and self-powered electronic systems. The characteristic of piezoelectric material is electromechanical coupling between electrical and mechanical domains. The design of a piezoelectric device for the purpose of storing the kinetic energy of random vibrations at the wheel of a vehicle is presented. The harvester is optimized to power the Tire Pressure Monitoring System (TPMS). The aim is to make of the value of power and voltage outputs for different input frequency conditions. A typical TPMS system consists of a battery operated one, in this paper bimorph is designed to powering a TPMS commercial feasibility of this option is compared to existing TPMS modules, which require batteries for operation.


Frequenz ◽  
2014 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Karimi ◽  
M. Yazdani ◽  
H. Siahkamari ◽  
A. Lalbakhsh

AbstractA novel lowpass filter with wide stopband and sharp skirt characteristics is proposed. To obtain the applicable lowpass filter, several cells of coupled T-shaped resonator, U-shape and dumbbell-shaped resonators are connected in series. The proposed filter has low insertion loss, high return loss in the passband and wide stopband. The transition band is from 3.18 to 3.29 GHz with −3 and −20 dB, respectively. Results of the fabricated filter exhibit a roll-off and relative stopband bandwidth of 217 and 137%, respectively. Measurement and simulation results show good agreement.


Author(s):  
А. S. Bagdasaryan ◽  
Yu. V. Gulyaev ◽  
S. A. Dobershtein ◽  
T. V. Sinitsina

This paper presents an efficient method for creating the wideband SAW filters with high rectangularity, flat amplitude response and low insertion loss in passband – use of fan-shaped IDTs with inclined electrodes. The authors consider the approaches for realization of the fan-shaped filters. The quantitative and qualitative characteristics of the fan-shaped SAW filters with a relative bandwidth ∆f/f0 = 4–75 %, shape factor 1,1–1,96 and insertion loss of 5–18 dB are given for each approach.


2016 ◽  
Vol 16 (1) ◽  
pp. 11
Author(s):  
Arief Budi Santiko ◽  
Yahya Syukri Amrullah ◽  
Yuyu Wahyu ◽  
Muhammad Ilham Maulana ◽  
Bambang Setia

In this paper, the design of microstrip BPF (Bandpass Filter) for WiMAX (Worldwide Interoperability for Microwave Access) application has been presented. The frequency band allocations for BWA (Broadband Wireless Access) in Indonesia are 2.3; 3.3 and 5.8 GHz. This microtrip BPF is designed using parallel coupled line in compact form and it has spesific parameter, i.e. 3.35 GHz center frequency, 400 MHz bandwidth, VSWR ≤ 2, -3 dB insertion loss and matching impedance between two port is 50 Ω. The Advanced Design System (ADS) software has been used during simulation and optimization. The simulation results show that return loss S11 and insertion loss S21 are -15.31 dB and -2.2 dB at 3.35 GHz respectively. For the design verification, the prototype of the proposed design wasfabricated and measured.The results of the fabrication approach of simulation results, which have return loss value S11and insertion loss S21 of the proposed microstrip filter are -18.20 dB and -2.91 dB at 3.35 GHz respectively. The result shows that the proposed design can be implemented forWiMAX communication system applications


Sign in / Sign up

Export Citation Format

Share Document