Experimental Research on Basalt Fiber Reinforced Cementitious Composites

2012 ◽  
Vol 253-255 ◽  
pp. 533-536 ◽  
Author(s):  
Jian Xun Ma ◽  
Ming Zhang ◽  
Gang Zhao

Basalt fiber was added to the traditional cement-based materials to improve the physical and mechanical properties. The mixture ratio of the matrix, the basalt fiber content, and the super-plasticizer type as well as its contents were designed optimally. The fluidity test, axial compressive strength and cube compressive strength test, flexure strength test were carried out. The results show that the fluidity and the compressive strength of basalt fiber reinforced cementitious composite(BFRCC for short) reduces when the basalt fiber content increases, but the toughness of traditional cement-based materials is improved by adding basalt fiber.

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898
Author(s):  
Marek Urbański

A new type of HFRP hybrid bars (hybrid fiber reinforced polymer) was introduced to increase the rigidity of FRP reinforcement, which was a basic drawback of the FRP bars used so far. Compared to the BFRP (basalt fiber reinforced polymer) bars, modification has been introduced in HFRP bars consisting of swapping basalt fibers with carbon fibers. One of the most important mechanical properties of FRP bars is compressive strength, which determines the scope of reinforcement in compressed reinforced concrete elements (e.g., column). The compression properties of FRP bars are currently ignored in the standards (ACI, CSA). The article presents compression properties for HFRP bars based on the developed compression test method. Thirty HFRP bars were tested for comparison with previously tested BFRP bars. All bars had a nominal diameter of 8 mm and their nonanchored (free) length varied from 50 to 220 mm. Test results showed that the ultimate compressive strength of nonbuckled HFRP bars as a result of axial compression is about 46% of the ultimate strength. In addition, the modulus of elasticity under compression does not change significantly compared to the modulus of elasticity under tension. A linear correlation of buckling load strength was proposed depending on the free length of HFRP bars.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Neslihan Doğan-Sağlamtimur ◽  
Adnan Güven ◽  
Ahmet Bilgil

Pumice, cements (CEM I- and CEM II-type), waste fly and bottom ashes (IFA, GBA, and BBA) supplied from international companies were used to produce lightweight building materials, and physical-mechanical properties of these materials were determined. Axial compressive strength (ACS) values were found above the standards of 4 and 8 MPa (Bims Concrete (BC) 40 and 80 kgf/cm2 class) for cemented (CEM I) pumice-based samples. On the contrary, the ACS values of the pumice-based cemented (CEM II) samples could not be reached to these standards. Best ACS results (compatible with BC80) from these cemented lightweight material samples produced with the ashes were found in 50% mixing ratio as 10.6, 13.2, and 20.5 MPa for BBA + CEM I, GBA + CEM II, and IFA + CEM I, respectively, and produced with pumice were found as 8.4 MPa (same value) for GBA + pumice + CEM II (in 25% mixing ratio), BBA + pumice + CEM I (in 100% mixing ratio), and pumice + IFA + CEM I (in 100% mixing ratio), respectively. According to the results, cemented ash-based lightweight building material produced with and without pumice could widely be used for constructive purposes. As a result of this study, an important input to the ecosystem has been provided using waste ashes, whose storage constitutes a problem.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1556 ◽  
Author(s):  
Fucheng Guo ◽  
Rui Li ◽  
Shuhua Lu ◽  
Yanqiu Bi ◽  
Haiqi He

Fiber-reinforced asphalt mixture has been widely used in pavement engineering to not only prevent asphalt binder leakage but also improve engineering properties of asphalt mixture. However, the research on three key parameters, namely fiber type, fiber length, and fiber content, which significantly affect the performance of fiber-reinforced asphalt mixture, have seldom been conducted systematically. To determine these three key parameters in the support of the application of fibers in mixture scientifically, three commonly used fibers were selected, basalt fiber, polyester fiber, and lignin fiber, and the testing on fibers, fiber-reinforced asphalt binders, and fiber-reinforced asphalt mixtures was conducted afterwards. The results showed: the favorable fiber type was basalt fiber; the favorable basalt fiber length was 6mm; the engineering properties including high temperature stability, low temperature crack resistance, and water susceptibility were clearly improved by the added basalt fiber, and the optimum basalt fiber content was 0.4 wt.%. The obtained results may be valuable from a practical point of view to engineers and practitioners.


2019 ◽  
Vol 9 (10) ◽  
pp. 2031 ◽  
Author(s):  
Hanbing Liu ◽  
Shiqi Liu ◽  
Shurong Wang ◽  
Xin Gao ◽  
Yafeng Gong

Basalt fibers are widely used in the modification of concrete materials due to its excellent mechanical properties and corrosion resistance. In this study, the basalt fibers were used to modify reactive powder concrete (RPC). The effect of four mix proportion parameters on the working and mechanical properties of basalt fiber reactive powder concrete (BFRPC) was evaluated by the response surface methodology (RSM). The fluidity, flexural and compressive strength were tested and evaluated. A statistically experimental model indicated that D (the silica fume to cement ratio) was the key of interactions between factors, affecting other factors and controlling properties of BFRPC. The increase in basalt fiber content had a remarkable effect on increasing the flexural and compressive strength when D = 0.2. The addition of basalt fiber obviously improved the mechanical properties of RPC. While when D = 0.4, the decrease of fiber content and the increase of quartz sand content could increase the compressive strength.


2017 ◽  
Vol 52 (14) ◽  
pp. 1907-1914 ◽  
Author(s):  
Yang Zhiming ◽  
Liu Jinxu ◽  
Feng Xinya ◽  
Li Shukui ◽  
Xu Yuxin ◽  
...  

Basalt fiber reinforced aluminum matrix composites with different fiber contents (i.e. 0 wt%, 10 wt%, 30 wt% and 50 wt%) were prepared by hot-press sintering. Microstructure analysis indicates that basalt fibers are uniformly distributed in 10% basalt fiber reinforced aluminum matrix composite. The interfacial bonding between basalt fibers and aluminum matrix is good, and there is no interface reaction between basalt fiber and aluminum matrix. Quasi-static tensile, quasi-static compression and dynamic compression properties of basalt fiber reinforced aluminum composites were studied, and the influences of basalt fiber content on mechanical properties were discussed. Meanwhile, the failure mechanisms of basalt fiber reinforced aluminum matrix composites with different fiber content were analyzed.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Yury Barabanshchikov ◽  
Ilya Gutskalov

The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.


2014 ◽  
Vol 906 ◽  
pp. 329-334
Author(s):  
Yu Ting Zhu ◽  
Dong Tao Xia ◽  
Bo Ru Zhou

In this paper, according to the national standard and testing methods,the direct tension strength,splitting tensile strength and cubic compressive strength test were carried out for 8 different groups of hybrid fiber (containing steel fiber, macro-polypropylene fiber and dura fiber) reinforced HPC specimens.The results showed that when the volume proportion of ternary hybrid fiber was less than 1%, there was not obvious influence for the concrete compressive strength, but the splitting tensile strength increased by 26% ~ 69%; the ratio between splitting tensile strength and compressive strength for HFRC increased to 1/12~1/9. When added 0.7% steel fiber, 0.19% macro-polypropylene fiber and 0.11% dura fiber, the confounding effect was the best. Based on the advantages and disadvantages of tensile splitting strength and direct tensile strength test and the results of tests, the concept of equivalent tensile strength and calculative formula was put forward .


Sign in / Sign up

Export Citation Format

Share Document