The Interaction and Monitoring System for Energy Saving in Building

2012 ◽  
Vol 253-255 ◽  
pp. 724-730
Author(s):  
Ming Zhong ◽  
Song Song Chen ◽  
He Wang ◽  
Hua Guang Yan

The continuous advance of the policy about ‘Energy saving and emission reduction’, along with the continuous development of information technology, control technology, which bring profitable conditions for the monitoring and control over the building (here mainly refers to the large building of government, commercial or industrial user). In particular, a interaction and monitoring system is proposed, which is used to monitor the parameters about energy consumption of energy consumption system or equipment inside the building, in addition the information about the running of the energy consumption system or equipment. At the same time, the relevant units of the energy consumption system or equipment is controlled by the interaction and monitoring system. The interaction and monitoring system for energy saving in building consists of the node for energy saving and monitoring, wireless sensor network (hereinafter referred to as WSN), the platform for energy saving and monitoring, making up the three-layer structure of the interaction and monitoring system inside the building. The node for energy saving and monitoring is a wireless sensor actually, which plays the role as collecting data and controlling. Along with the other nodes for energy saving and monitoring, as well as the nodes acting as repeater, router, coordinator, all nodes inside the building compose the WSN. The node acting as the repeater is of great significance for the transmission of data, especially when some nodes for energy saving and monitoring is located in underground building and some other places where the signal of WSN is blocked, as well as the places far away from the neighbor nodes of WSN. The coordinator is located on the platform for energy saving and monitoring, meanwhile the function of gateway is integrated in the node acting as the coordinator. This node converge the data of the WSN, and transfers the data to the server of the platform for energy saving and monitoring.

2013 ◽  
Vol 765-767 ◽  
pp. 2109-2112 ◽  
Author(s):  
Jin Liu ◽  
Lian Jie Li ◽  
Yu Xin Liu

Based on the wireless sensor network technology, an environmental monitoring system with localization and magnetic detection capabilities is developed for unattended remote environment monitoring and control. In the system, monitoring nodes adopt the CC2420 to build a low-power, short-range jump, self-organizing wireless network, and the gateway node uses the GPRS technology to link the front monitoring network to the rear monitor center. Meanwhile, a component-based software framework is provided to facilitate the protocol implement and to improve expansibility. The experiment demonstrates that the supervisory system can realize the environmental control duty and has a good application value.


2014 ◽  
Vol 607 ◽  
pp. 681-684
Author(s):  
Kai Zhu ◽  
Yin Cheng Liang ◽  
Xu Qiao

Energy consumption is a main area in wireless sensor network researching. Interior monitoring system is designed by organized ZigBee wireless network. Address assignment mechanism is put forward and the result about sensor nodes is displayed. Aiming at the problems of LEACH algorithm that all nodes will be assigned cluster head, this paper proposes the algorithm that cluster head projected in first every round is effective until the next round so that reducing energy consumption in competition about cluster head. Through the simulation test, network address assignment is normal, data can be displayed through LED, and network telecommunication is stable.


2020 ◽  
Vol 39 (4) ◽  
pp. 5449-5458
Author(s):  
A. Arokiaraj Jovith ◽  
S.V. Kasmir Raja ◽  
A. Razia Sulthana

Interference in Wireless Sensor Network (WSN) predominantly affects the performance of the WSN. Energy consumption in WSN is one of the greatest concerns in the current generation. This work presents an approach for interference measurement and interference mitigation in point to point network. The nodes are distributed in the network and interference is measured by grouping the nodes in the region of a specific diameter. Hence this approach is scalable and isextended to large scale WSN. Interference is measured in two stages. In the first stage, interference is overcome by allocating time slots to the node stations in Time Division Multiple Access (TDMA) fashion. The node area is split into larger regions and smaller regions. The time slots are allocated to smaller regions in TDMA fashion. A TDMA based time slot allocation algorithm is proposed in this paper to enable reuse of timeslots with minimal interference between smaller regions. In the second stage, the network density and control parameter is introduced to reduce interference in a minor level within smaller node regions. The algorithm issimulated and the system is tested with varying control parameter. The node-level interference and the energy dissipation at nodes are captured by varying the node density of the network. The results indicate that the proposed approach measures the interference and mitigates with minimal energy consumption at nodes and with less overhead transmission.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 575
Author(s):  
Shangyi Lou ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

Subsoiling has been acknowledged worldwide to break compacted hardpan, improve soil permeability and water storage capacity, and promote topsoil deepening and root growth. However, there exist certain factors which limit the wide in-field application of subsoiling machines. Of these factors, the main two are poor subsoiling quality and high energy consumption, especially the undesired tillage depth obtained in the field with cover crops. Based on the analysis of global adoption and benefits of subsoiling technology, and application status of subsoiling machines, this article reviewed the research methods, technical characteristics, and developing trends in five key aspects, including subsoiling shovel design, anti-drag technologies, technologies of tillage depth detection and control, and research on soil mechanical interaction. Combined with the research progress and application requirements of subsoiling machines across the globe, current problems and technical difficulties were analyzed and summarized. Aiming to solve these problems, improve subsoiling quality, and reduce energy consumption, this article proposed future directions for the development of subsoiling machines, including optimizing the soil model in computer simulation, strengthening research on the subsoiling mechanism and comprehensive effect, developing new tillage depth monitoring and control systems, and improving wear-resisting properties of subsoiling shovels.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Glauco Feltrin ◽  
Nemanja Popovic ◽  
Kallirroi Flouri ◽  
Piotr Pietrzak

Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the maintenance costs and reduces the competitiveness of wireless sensor networks. To overcome this drawback, a signal conditioning hardware was designed that is able to significantly reduce the energy consumption. Furthermore, the communication overhead is reduced to a sustainable level by using an embedded data processing algorithm that extracts the strain cycles from the raw data. Finally, a simple software triggering mechanism that identifies events enabled the discrimination of useful measurements from idle data, thus increasing the efficiency of data processing. The wireless monitoring system was tested on a railway bridge for two weeks. The monitoring system demonstrated a good reliability and provided high quality data.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Joyoung Lee ◽  
Zijia Zhong ◽  
Bo Du ◽  
Slobodan Gutesa ◽  
Kitae Kim

This paper presents a low-cost and energy-saving urban mobility monitoring system based on wireless sensor networks (WSNs). The primary components of the proposed sensor unit are a Bluetooth sensor and a Zigbee transceiver. Within the WSN, the Bluetooth sensor captures the MAC addresses of Bluetooth units equipped in mobile devices and car navigation systems. The Zigbee transceiver transmits the collected MAC addresses to a data center without any major communications infrastructures (e.g., fiber optics and 3G/4G network). A total of seven prototype sensor units have been deployed on roadway segments in Newark, New Jersey, for a proof of concept (POC) test. The results of the POC test show that the performance of the proposed sensor unit appears promising, resulting in 2% of data drop rates and an improved Bluetooth capturing rate.


ELKHA ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 33
Author(s):  
Erwin Sitompul ◽  
Agus Rohmat

Machines are valuable assets that need to be protected from damage and failure through proper maintenance measures. This paper proposes a system that automatically monitors the running time of machines and sends notifications regarding their preventive maintenance (PM) schedules. The system core consists of a programmable logic controller (PLC) and a human machine interface (HMI). The HMI is connected to an online platform via internet connection provided by a router, so that the monitoring result can be accessed via Android smartphone or laptop/PC. This IoT-based running time monitoring system (IRTMS) will be particularly helpful in implementation at an production site that consists of multiple various machines. The PM items of a machine may vary from cleaning, changing single component, to an overhaul, each with different time interval. By using the IRTMS, the user will have an overview of the PM schedules anytime and anywhere. The preparation of material, components, or tools can be known ahead of time. For simulation purpose, a prototype is constructed by using components as used in industrial real-life condition. Four output connections are provided to simulate the simultaneous monitoring of four machines. The IRTMS prototype is tested and completely successful on doing the running time monitoring, the running time reset, the PM notifications, and the remote access for monitoring and control.


Sign in / Sign up

Export Citation Format

Share Document