Mechanical Strength and Microstructure Analysis of Cementitious Wheat Straw Composite

2013 ◽  
Vol 357-360 ◽  
pp. 766-772
Author(s):  
Lin Zhang ◽  
Fu Sheng Liu ◽  
Ji Yong Song ◽  
Yan Bin Zhang ◽  
Gang Gang Dong

Wheat straw alkali treatment has impacts on the strength of cement mortar and glazed hollow beads insulation mortar. The results show that the bending strength and bending strength of cement mortar specimen with 4% wheat straw are respectively 58.3% and 40.9% of the benchmark specimen, but bending-press ratio of the latter is 1.42 times of the former. The SEM images reflect the straws influences on the cement hydrate morphology, status and the influence of the number on cement mortar and glazed hollow beads insulation mortar. Compared with the latter, the former C-S-H gel is loose fibrous, failure to form a good network. In the thermal insulation mortar consistency and stratification of the same circumstances, with straw dosage increased, strength first increases, then declining. And folding pressure than in straw dosage is less than 24% more ideal. The SEM pictures show that network C-S-H gel decrease and loose fibrous C-S-H gel increased. At the same time, AFt gradually become attenuate and curly.

2021 ◽  
Vol 304 ◽  
pp. 124642
Author(s):  
Guosheng Ren ◽  
Zhijie Tian ◽  
Jingjiang Wu ◽  
Xiaojian Gao

Bioethanol ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
María García-Torreiro ◽  
Miguel Álvarez Pallín ◽  
María López-Abelairas ◽  
Thelmo A. Lu-Chau ◽  
Juan M. Lema

AbstractBioconversion of lignocellulosic materials into ethanol requires an intermediate pretreatment step for conditioning biomass. Sugar yields from wheat straw were previously improved by the addition of a mild alkali pretreatment step before bioconversion by the white-rot fungus Irpex lacteus. In this work, an alternative alkaline treatment, which significantly reduces water consumption, was implemented and optimized. Sugar recovery increased 117% with respect to the previously developed alkaline wash process at optimal process conditions (30°C, 30 minutes and 35.7% (w/w) of NaOH). In order to further reduce operational costs, a system for alkali recycling was implemented. This resulted in the treatment of 150% more wheat straw using the same amount of NaOH. Finally, enzymatic hydrolysis was optimized and resulted in a reduction of enzyme dose of 33%.


BioResources ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianzheng Qiao ◽  
Aijun Wang ◽  
Xingong Li

2016 ◽  
Vol 852 ◽  
pp. 1482-1487
Author(s):  
Fan Cheng ◽  
Yu Hao Jiang ◽  
Jin Bo Chen ◽  
Peng Bo Lu ◽  
Ling Feng Su ◽  
...  

Eco-friendly building materials with perfect thermal insulation & sound absorption property have become intriguing and eye-catching in recent years. In this work, the ultra low-density binderless sandwiching materials were firstly fabricated with ultra low-density of 60-80 kg/m3 by self-designed rapid steam injection technology. The main experimental factor of density, holding time, transmission time, steam injection pressure and fiber’s dimension was respectively investigated to their effects on formation of the new building materials. IR, Py GC-MS and AFM analysis were performed to study the mechanism of binderless sandwiching materials under steam injection process. The bending strength, thermal insulation & sound absorption property of the new materials were also studied. This new building material with no resin use and no formaldehyde release is expected to be reserved as the sandwich for designing thermal insulation & noise reduction building materials.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1575
Author(s):  
Huong Nguyen Thi ◽  
Khanh Vu Thi Hong ◽  
Thanh Ngo Ha ◽  
Duy-Nam Phan

Cotton fabric treated by Pyrovatex CP New (PCN) and Knittex FFRC (K-FFRC) using the Pad-dry-cure method showed an excellent fire-retardant effect. However, it needed to be cured at high temperatures for a long time leading to a high loss of mechanical strength. In this study, atmospheric-pressure dielectric barrier discharge (APDBD) plasma was applied to the cotton fabric, which then was treated by flame retardants (FRs) using the pad–dry-cure method. The purpose was to have a flame-retardant cotton fabric (limiting oxygen index (LOI) ≥ 25) and a mechanical loss of the treated fabric due to the curing step as low as possible. To achieve this goal, 10 experiments were performed. The vertical flammability characteristics, LOI value and tensile strength of the treated fabrics were measured. A response model between the LOI values of the treated fabric and two studied variables (temperature and time of the curing step) was found. It was predicted that the optimal temperature and time-to-cure to achieve LOI of 25 was at 160 °C for 90 s, while the flame-retardant treatment process without plasma pretreatment, was at 180 °C and 114 s. Although the curing temperature and the time have decreased significantly, the loss of mechanical strength of the treated fabric is still high. The tensile strength and scanning electron microscopy (SEM) images of the fabric after plasma activation show that the plasma treatment itself also damages the mechanical strength of the fabric. X-ray photoelectron spectroscopy (XPS) spectra of the fabric after plasma activation and energy-dispersive spectroscopy (EDS) analysis of the flame retardant-treated (FRT) fabric clarified the role of plasma activation in this study.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2716
Author(s):  
Hoang Anh Tuan ◽  
Shinji Hirai ◽  
Shota Inoue ◽  
Alharbi A. H. Mohammed ◽  
Shota Akioka ◽  
...  

This research reports the processability and mechanical properties of silk resins prepared by hot-pressing followed by hot-rolling and then analyzes their thermal and structural properties. The results show that regenerated silk (RS) resins are better suited for hot-rolling than Eri and Bombyx mori silk resins (untreated silk). When hot-rolling at 160 °C with a 50% of reduction ratio, maximum bending strength and Young’s modulus of RS resin reaches 192 MPa and 10.2 GPa, respectively, after pretreatment by immersion in 40 vol% ethanol, and 229 MPa and 12.5 GPa, respectively, after pretreatment by immersion in boiling water. Increased strength of the material is attributed to the increased content of aggregated strands and intramolecular linking of β sheets (attenuated total reflectance Fourier-transform infrared spectroscopy) and higher crystallinity (X-ray diffraction analysis). After hot-pressing and hot-rolling, RS resins have a stable decomposition temperature (297 °C).


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3295
Author(s):  
Mohammad R. Irshidat ◽  
Nasser Al-Nuaimi

This paper experimentally investigates the effect of utilization of carbon dust generated as an industrial waste from aluminum factories in cementitious composites production. Carbon dust is collected, characterized, and then used to partially replace cement particles in cement mortar production. The effect of adding different dosages of carbon dust in the range of 5% to 40% by weight of cement on compressive strength, microstructure, and chemical composition of cement mortar is investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF) analysis are used to justify the results. Experimental results show that incorporation of carbon dust in cement mortar production not only reduces its environmental side effects but also enhances the strength of cementitious composites. Up to 10% carbon dust by weight of cement can be added to the mixture without adversely affecting the strength of the mortar. Any further addition of carbon dust would decrease the strength. Best enhancement in compressive strength (27%) is achieved in the case of using 5% replacement ratio. SEM images show that incorporation of small amount of carbon dust (less than 10%) lead to produce denser and more compact-structure cement mortar.


2020 ◽  
Vol 15 ◽  
pp. 155892502091558
Author(s):  
Xiaoping Gao ◽  
Xiaori Yang ◽  
Xianyan Wu ◽  
Pibo Ma

An experimental study of bending properties of composites reinforced with triaxial and quadaxial warp-knitted glass fabrics was carried out in the 0°, 45°, and 90° directions at −30°C, 0°C, 20°C, and 40°C, respectively. The relationships between the stress–strain curves, bending strength, bending modulus, and temperature were obtained. The failure mechanisms at different temperatures were also analyzed based on the fracture morphologies and scanning electron microscope (SEM) images. The results indicated that the bending properties decrease slightly with the increase in temperature from −30°C to 20°C and decrease dramatically from 20°C to 40°C. The ultimate bending strength of triaxial and quadaxial warp-knitted composites decreases approximately 31.34% and 34.29%, respectively. In particular, the relationships between bending strength and temperature were also obtained by nonlinear fitting with the experimental data, which could be used to predict the bending behavior at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document