A Study of Characteristic Signal Propagation Buried Pipeline 2

2010 ◽  
Vol 36 ◽  
pp. 387-394
Author(s):  
Hisashi Oohira ◽  
Serikawa Seiichi

It was reported in the previous report that the propagation constant measuring system for long distance pipelines was produced based upon the distribution constant theory for the purpose of maintenance and management of long distance pipelines buried underground and to have a system to directly measure the propagation constants and characteristic impedance of the pipeline buried underground. This time, a simulator for the signal propagation of a pipeline, referring to these actual measurement values, was constructed and various signal modes were simulated. On the prediction of accidents where heavy-construction equipment, such as backhoe or boring machine, has contact with a pipeline and damages the coating of pipeline, the damage simulations with a backhoe and boring machine were performed and the fault resistances of these heavy-construction pieces of equipment at the time of accidents were identified. As a result, it was revealed that the fault resistance generated by the metal-to-metal contact caused by the boring machine, which damages pipeline the most, was approximately 20-50Ω when water was used, and that caused by the backhoe was approximately 100Ω. In order to verify the detectable property of this system, a simulation was performed to determine how each distributed constant changed when this degree of grounding faults occurred in the monitoring section of the pipeline, and validated it with an actual pipeline.

2010 ◽  
Vol 36 ◽  
pp. 381-386 ◽  
Author(s):  
Hisashi Oohira ◽  
Serikawa Seiichi

The propagation constant measurement system was developed for long distance pipelines based on a distributed constant theory for the purpose of maintenance and management of long distance pipelines buried underground, and it was applied for the first time to a 14-killometer pipeline buried underground. This system is based upon the application of the distributed constant theory, and includes facilities to apply an ac signal from the central part of the pipeline, and measure the actual values and phases of voltage and electric current of the ac signal running through the pipeline, at either both ends or between them. In order to accurately measure the phase difference between the two separate points, a reference signal fabricated at 1 PPS (1 pulse per sec) in a GPS (Global Positioning System) was used. With this system, direct measurement of the propagation constant and characteristic impedance of a pipeline buried underground was realized for the first time.


Author(s):  
Akihiro Ametani ◽  
Teruo Ohno

The chapter contains the basic theory of a distributed-parameter circuit for a single overhead conductor and for a multi-conductor system, which corresponds to a three-phase transmission line and a transformer winding. Starting from a partial differential equation of a single conductor, solutions of a voltage and a current on the conductor are derived as a function of the distance from the sending end. The characteristics of the voltage and the current are explained, and the propagation constant (attenuation and propagation velocity) and the characteristic impedance are described. For a multi-conductor system, a modal theory is introduced, and it is shown that the multi-conductor system is handled as a combination of independent single conductors. Finally, a modeling method of a coil is explained by applying the theories described in the chapter.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 116
Author(s):  
Julian Deuerling ◽  
Shaun Keck ◽  
Inasya Moelyadi ◽  
Jens-Uwe Repke ◽  
Matthias Rädle

This work presents a novel method for the non-invasive, in-line monitoring of mixing processes in microchannels using the Raman photometric technique. The measuring set-up distinguishes itself from other works in this field by utilizing recent state-of-the-art customized photon multiplier (CPM) detectors, bypassing the use of a spectrometer. This addresses the limiting factor of integration times by achieving measuring rates of 10 ms. The method was validated using the ternary system of toluene–water–acetone. The optical measuring system consists of two functional units: the coaxial Raman probe optimized for excitation at a laser wavelength of 532 nm and the photometric detector centered around the CPMs. The spot size of the focused laser is a defining factor of the spatial resolution of the set-up. The depth of focus is measured at approx. 85 µm with a spot size of approx. 45 µm, while still maintaining a relatively high numerical aperture of 0.42, the latter of which is also critical for coaxial detection of inelastically scattered photons. The working distance in this set-up is 20 mm. The microchannel is a T-junction mixer with a square cross section of 500 by 500 µm, a hydraulic diameter of 500 µm and 70 mm channel length. The extraction of acetone from toluene into water is tracked at an initial concentration of 25% as a function of flow rate and accordingly residence time. The investigated flow rates ranged from 0.1 mL/min to 0.006 mL/min. The residence times from the T-junction to the measuring point varies from 1.5 to 25 s. At 0.006 mL/min a constant acetone concentration of approx. 12.6% was measured, indicating that the mixing process reached the equilibrium of the system at approx. 12.5%. For prototype benchmarking, comparative measurements were carried out with a commercially available Raman spectrometer (RXN1, Kaiser Optical Systems, Ann Arbor, MI, USA). Count rates of the spectrophotometer surpassed those of the spectrometer by at least one order of magnitude at identical target concentrations and optical power output. The experimental data demonstrate the suitability and potential of the new measuring system to detect locally and time-resolved concentration profiles in moving fluids while avoiding external influence.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1216
Author(s):  
Xin Wang ◽  
Bo Li ◽  
Fan Zhao ◽  
Xinyu Luo ◽  
Luxi Huang ◽  
...  

Due to the occlusion of the moon, an annular solar eclipse will have an effect on the ionosphere above the earth. The change of the ionosphere, for the low-frequency time-code signal that relies on it as a reflection medium for long-distance propagation, the signal field strength, and other parameters will also produce corresponding changes, which will affect the normal operation of the low-frequency time-code time service system. This paper selects the solar eclipse that occurred in China on 21 June 2020, and uses the existing measurement equipment to carry out experimental research on the low-frequency time-code signal. We measured and analyzed the signal field strength from 20 June 2020 to 23 June 2020, and combined solar activity data, ionospheric data, and geomagnetic data, and attempted to explore the reasons and rules of the change of signal parameters. The results showed that the field strength of the low-frequency time-code signal changed dramatically within a short time period, the max growth value can reach up to 17 dBμV/m and the variation trend yielded ‘three mutations’. This change in signal field strength is probably due to the occurrence of a solar eclipse that has an effect on the ionosphere. When the signal propagation conditions change, the signal strength will also change accordingly.


1968 ◽  
Author(s):  
Gary L. Goodenow ◽  
Thomas R. Kolhoff ◽  
Fraser D. Smithson

2021 ◽  
Vol 254 ◽  
pp. 02007
Author(s):  
Vladimir Korochentsev ◽  
Сhen Wenjian ◽  
Victor Petrosyants ◽  
Tatiana Lobova ◽  
Julia Shpak

A mathematical model for elastic wave propagation in an ice cover with uneven relief (hummock) has been developed. The theoretical model is based on the application of “directed” Green’s functions. We obtained numerical results for different distances between radiating and receiving antennas installed inside the ice layer and in water medium. An information-measuring system was created to investigate elastic acoustic waves along ice surface based on electo-hydraulic generator. Experiments of high-frequency acoustic signal propagation from electro-hydraulic generator in water-ice-air system were carried out. We illustrated the model validity for the investigation of hydroacoustic wave propagation in real ice conditions.


Author(s):  
Y. Zhu ◽  
H. Yamada ◽  
S. Hayashi

A diode-laser absorption system having the potential of simultaneous determination of NO and NO2 concentrations in the exhaust jets from gas turbines has been being developed. The sensitivities of the detection units at a typical exhaust gas temperature of 800 K were estimated as 30 ppmv-m and 3.7 ppmv-m for NO and NO2, respectively. Experiments using simulated exhaust gas flows have shown that CO2 do not have any interference with the NO and NO2 measurements. The detection limits in ppm of the system were considerably lowered by using a multi-pass optical system. A pair of off-axis parabola mirrors was useful to prevent the laser beam from straying from the detection area of the sensor due to the beam steering in the exhaust gas. Furthermore, the multi-path optical duct fabricated with 14 mirrors on the inner wall was effective in the measurement of NO and NO2 in the exhaust gas from gas turbines.


2021 ◽  
Vol 263 (3) ◽  
pp. 3714-3719
Author(s):  
Takamasa Sato ◽  
Shuichi Sakamoto ◽  
Isami Nitta ◽  
Shunsuke Unai ◽  
Takunari Isobe ◽  
...  

In this study, we conducted theoretical analyses and experiments related to the acoustic characteristics of the situation where sound waves are incident upon the side surfaces of a group of cylinders forming a pin-holder structure. The sound-absorption coefficient, entering its clearance between cylinders through the geometrical dimension of the clearance or the physical property of gas, was calculated. In the analytical model, the gap part of the pin-holder structure was divided into elements and approximated as a gap surrounded by two parallel planes. The characteristic impedance and propagation constant of the approximate gap were obtained and treated as one-dimensional transfer matrices; the sound-absorption coefficient was then calculated using the transfer-matrix method. The calculated value was compared to that obtained in an experiment with a sample prepared using a 3D printer; the sound-absorption coefficient was measured using a 2-microphone impedance-measuring tube. We attempted to make a simple yet accurate estimation of sound-absorption coefficient using these procedures. Our theoretical values displayed a similar tendency to that obtained by experiment.


1979 ◽  
Vol 82 (1) ◽  
pp. 321-330
Author(s):  
ALAIN BELAUD ◽  
YVES TROTTER ◽  
CLAUDE PEYRAUD

1. In the eel (Anguilla anguxlla L.), the dorsal and ventral aortas and the subhepatic vein were catheterized to provide an external circulatory shunt. POO2 in the shunted blood was continuously recorded using a polarographic measuring device. 2. Spontaneous interruptions in the eel's ventilatory activity result in rapid changes in Pα, Oα, O2. The period of these Pα, Oα, O2 oscillations is sometimes less than 1 min. However, the response time of the measuring system is so great under the conditions of these experiments that only slow variations of Pα, Oα, O2 of a period greater than 5 min, are faithfully recorded. 3. In view of the impractibility of technical improvement in the recording system, a data processing method was developed to reconstitute the real physiological variations from the distorted experimental recordings. 4. Through this method of data correction, it is demonstrated that apnoeic or active ventilatory phases in the eel's breathing pattern are not triggered by constant low values of Pα, Oα, O2. Other physiological applications are suggested. Note: Equipe de Recherche Aasociee du Centre National de la Recherche Scientifique n 070623


Sign in / Sign up

Export Citation Format

Share Document