A Numerical Study of the Partial Slip Elliptical Contact under Fretting Conditions

2013 ◽  
Vol 371 ◽  
pp. 576-580 ◽  
Author(s):  
Sergiu Spînu ◽  
Dorin Gradinaru

The technologically important elliptical contact undergoing fretting is simulated using previously advanced state-of-the-art numerical tools. The influence of contact ellipse eccentricity on various contact parameters is assessed. An analogy with the circular contact is found when tractions equations are written in dimensionless coordinates in case of similarly elastic materials. However, when an elastic mismatch is introduced, the stick area no longer follows proportionally the established contact area.

2003 ◽  
Vol 125 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Yeau-Ren Jeng ◽  
Pei-Ying Wang

This study developed an elastic-plastic microcontact model that considers the elliptical contact of surface asperities. In the elastoplastic regime, the relations of the mean contact pressure and contact area of asperity to its contact interference are modeled considering the continuity and smoothness of variables across different modes of deformation. Results obtained from this model are compared with other existing models such as that calculated by the GW, CEB, Zhao and Horng models. The elliptic contact model and circular contact model can deviate considerably in regard to the separation and real area of contact.


Author(s):  
Nadine Nagler ◽  
Armin Lohrengel

AbstractOverrunning clutches, also known as freewheel clutches, are frictionally engaged, directional clutches; they transmit torque depending on the Freewheel clutch rings’ rotation directions. The torque causes a tangential force in the Hertzian contact area. The hitherto “state-of-the-art design criterion” bases on this load situation. In practice, axial loads additionally act on the frictionally engaged Hertzian contact area. This additional axial load can cause the loss of the friction connection and so the freewheel clutch slips. This publication presents an improved design criterion for frictionally engaged contacts in freewheel clutches. It allows to consider tangential as well as axial loads during the design process. Additionally, it offers the possibility to estimate the probability of frictional engagement loss and gross slip based on the freewheel clutch’s application scenario. This publication points out how to use the improved design criterion to design freewheel clutches that are more robust against a loss of function.


Author(s):  
Mingfei Ma ◽  
Wen Wang ◽  
Wenxun Jiang

As a common phenomenon in elastohydrodynamic lubrication, cavitation has an effect on the completeness of the oil film in the contact area. Many studies have therefore been conducted on cavitation. Experimental researches on cavitation usually rely on optical interference observation, which offers a limited resolution and observation range. In this paper, an infrared thermal camera is used to observe the cavity bubbles on a ball-on-disc setup under sliding/rolling conditions. The results show that the cavity length increases with an increases of the entrainment speed and the viscosity of the lubricants. These observations are explained by a numerical model based on Elrod's algorithm. Effects of entrainment speed and lubricant viscosity on the breakup of cavitation bubbles and the cavitation states are investigated. Both the simulation and experimental results show that a negative pressure area is present behind the Hertzian contact area. The ambient pressure plays a role in maintaining cavitation state 1. The cavitation pressure is close to the vacuum pressure when the entrainment speed is low and to the ambient pressure instead when the entrainment speed is high.


2009 ◽  
Vol 24 (6) ◽  
pp. 1950-1959 ◽  
Author(s):  
N. Hakiri ◽  
A. Matsuda ◽  
M. Sakai

In instrumented indentation tests for a thin film coating on a substrate (film/substrate composite), it is well known that the substrate-affected contact area estimated through conventional approximations includes significant uncertainties, leading to a crucial difficulty in determining the elastic modulus and the contact hardness. To overcome this difficulty, an instrumented indentation microscope that enables researchers to make an in situ determination of the contact area is applied to an elastoplastic film on substrates having various values of their elastic moduli. Using the indentation microscope, the substrate-affected indentation contact parameters including contact hardness of the film/substrate composites are determined directly as well as quantitatively without any undesirable assumptions and approximations associated with the contact area estimate. The effect of a stiffer substrate on the contact profile of impression is significant, switching the profile from sinking in to piling up during penetration, and resulting in the substrate-affected contact hardness being highly enhanced at deeper penetrations. Through the present experimental study, it is demonstrated how efficient that instrumented indentation microscopy is in determining the substrate-affected elastoplastic contact parameters of film/substrate composite systems.


Author(s):  
Emanuel N. Diaconescu

Hertz theory fails when contacting surfaces are expressed by a sum of even polynomials of higher powers than two. An alternative analytical solution implies the knowledge of contact area. In the case of elliptical domains, there are some published proposals for the correlation between pressure distribution and surface normal displacement. This paper identifies the class of high order surfaces which lead to elliptical contact domains and solves a contact between fourth order surfaces.


1985 ◽  
Vol 52 (1) ◽  
pp. 62-66 ◽  
Author(s):  
C. M. Szalwinski

From Cerruti’s solution to the problem of the plane and Cattaneo’s traction distributions, instantaneous and secant flexibilities are derived for an elliptical contact area which includes a region of slip. The results apply to force histories where the tangential component is constantly directed. Some of the results differ from those reported by Mindlin and Deresiewicz [4]. Ellipticity affects normal and tangential flexibilities differently but is independent of the extent of slip.


Author(s):  
K. L. Johnson ◽  
J. A. Greenwood

The so-called JKR theory of adhesion between elastic spheres in contact (Johnson, Kendall & Roberts 1971, Sperling 1964) has been widely used in micro-tribology. In this paper the theory is extended to solids of general shape and curvature. It is assumed that the area of contact is elliptical which turns out to be approximately true, though the eccentricity is different from that for non-adhesive contact. Closed form expressions are found for the variation with load of contact radius and displacement, as a function of the ratio of principal relative curvatures of the two bodies in contact. The pull-off force is found to decrease with increasing eccentricity from its value of 3πΔγR/2 in the case of contact of spheres of radius R.


Author(s):  
D. Botto ◽  
M. Lavella ◽  
M. M. Gola

The modelling of the friction interfaces has received much attention in recent years from the aerospace industry. In order to obtain reliable prediction of the nonlinear dynamic behaviour of the disc and blades in the aerospace engine the friction forces at interfaces, such as in under-platform dampers, blade and fir tree roots or shrouds, must be modelled accurately. Two contact parameters, namely the contact stiffness and the coefficient of friction, are sufficient to model, with good accuracy, the friction contact. The contact parameters are obtained experimentally, and are of interest for the designer only if representative of the operational environment of the engine. To pursue this aim a test rig has been designed to perform experiments in a wide range of temperatures, with different combinations of normal and tangential load, frequencies and mating materials, representative of the real operating condition of the engine. Most of the rigs found in literature perform most likely point contact even if the two bodies have plane mating surfaces. The design of a real plane-on-plane contact test rig is not an easy task but despite the difficulty a solution was found in the design shown in this work. The core of the rig is a tilting mechanism enabling one surface to lies down on the other so that the plane-on-plane contact is achieved, at least within the flatness geometrical tolerance of the surfaces. The results of the experiments are the hysteresis loops, namely the tangential contact force against the relative displacement, from which the contact parameters can be calculated. Measurements of displacements are taken very close to the actual contact area and are performed by means of two laser interferometers. Localized heating is achieved by means of an induction heating machine while a thermocouple measures the temperature at points close to the contact area.


2015 ◽  
Vol 82 (9) ◽  
Author(s):  
Fan Jin ◽  
Qiang Wan ◽  
Xu Guo

A plane contact and partial slip model of an elastic layer with randomly rough surface were established by combining the Greenwood–Williamson (GW) rough contact model and the Cattaneo–Mindlin partial slip model. The rough surface of the elastic layer bonded to a rigid base is modeled as an ensemble of noninteracting asperities with identical radius of curvature and Gaussian-distributed heights. By employing the Hertzian solution and the Cattaneo–Mindlin solution to each individual asperity of the rough surface, we derive the total normal force, the real contact area, and the total tangential force for the rough surface, respectively, and then examine the normal contact and partial slip behaviors of the layer. An effective Coulomb coefficient is defined to account for interfacial friction properties. Furthermore, a typical stick–slip transition for the rough surface was also captured by distinguishing the stick and slip contacting asperities according to their respective indentation depths. Our analysis results show that an increasing layer thickness may result in a larger real contact area, a lower mean contact pressure, and a higher effective Coulomb coefficient.


1977 ◽  
Vol 99 (4) ◽  
pp. 485-487 ◽  
Author(s):  
David E. Brewe ◽  
Bernard J. Hamrock

A linear regression by the method of least squares is made on the geometric variables that occur in the equation for elliptical-contact deformation. The ellipticity and the complete elliptic integrals of the first and second kind are expressed as a function of the x, y-plane principal radii. The ellipticity was varied from 1 (circular contact) to 10 (a configuration approaching line contact). The procedure for solving for these variables without the use of charts or a high-speed computer would be quite tedious. These simplified equations enable one to calculate easily the elliptical-contact deformation to within 3 percent accuracy without resorting to charts or numerical methods.


Sign in / Sign up

Export Citation Format

Share Document