Cooling Capability of Cutting Fluids in Grinding

2013 ◽  
Vol 371 ◽  
pp. 89-94
Author(s):  
Guo Xu Yin ◽  
Ioan D. Marinescu

Grinding is a machining process used in the production of components with high precision tolerances and smooth finishes. It is an extremely complex process in which the main difference between grinding and other process is the relatively large contact area between the abrasive grits and the workpiece surface. The large contact area will cause difficulties supplying cutting fluids to the grinding arc, which leads to high energy input per volume of material removed. Since most of this energy dissipates as heat, a high temperature will occur. This will not only produce thermal damage and reduce the precision and quality of the workpiece surface, but also cause wear of the grinding wheel [. Therefore, the use of a process fluid in grinding is imperative in most cases.

2009 ◽  
Vol 76-78 ◽  
pp. 163-168 ◽  
Author(s):  
Taghi Tawakoli ◽  
Abdolreza Rasifard ◽  
Alireza Vesali

The efficiency of using of CBN grinding wheels highly depends on the dressing process as well as on the coolant lubricant used. The Institute of Grinding and Precision Technology (KSF) investigated the performance of vitrified CBN grinding wheels -being dressed using different parameters- while using two different grinding oils and two different water-miscible coolant lubricants. The obtained results show that the performance of the vitrified CBN grinding wheels regarding the quality of the workpiece surface, the grinding forces as well as the wear of the grinding wheel, highly depend on the dressing conditions and the type of the coolant lubricant used. Compared to the water-miscible coolant lubricants, the grinding oils show better results.


2017 ◽  
Vol 261 ◽  
pp. 215-220
Author(s):  
Martin Novák ◽  
Natasa Naprstkova

Machining of tool steels is often an important used technology. Products made from these materials are often used in mechanical engineering, and quality of workpiece surface roughness after machining respective grinding is one of the important parameters that to us speak about the quality of the machining process. The paper deals with the influence of cutting conditions when grinding bearing steel 100Cr (EN ISO) on machined surface roughness. This steel belongs to a group of bearing steels.


2013 ◽  
Vol 581 ◽  
pp. 247-254 ◽  
Author(s):  
Martin Novák ◽  
Natasa Naprstkova

Machining of tool steels is often an important used technology. Products made from these materials are often used in mechanical engineering, and quality of workpiece surface roughness after machining respective grinding is one of the important parameters that to us speak about the quality of the machining process. The paper deals with the influence of cutting conditions when grinding tool steel X38CrMoV5 (EN ISO) on machined surface roughness.


Author(s):  
S A Voronov ◽  
I A Kiselev

The five-axis milling operations are commonly used in aerospace industry. For example, this operation is the base for the machining process of the turbine blade production. The milling operations of thin-walled structures cause the vibrations of the tool and the workpiece and this turn affect the quality of the workpiece surface. Modelling of the milling process is necessary to determine the proper cutting conditions for the required productivity and the surface quality. In this article, the geometry modelling algorithm for five-axis milling process is proposed. Dynamics of the machined surface is modelled using the finite-element method. The obtained results make possible to conclude about the stability of milling process and to calculate the efficient processing conditions at which the amplitude of the generated vibrations does not exceed the admissible level. The results of this research can be used while the milling process technologies are designed. Especially, it is significant for the machining of hard-to-machine materials and processing of heat-resistant alloys in space and aircraft industries.


2011 ◽  
Vol 325 ◽  
pp. 28-34
Author(s):  
Bei Zhi Li ◽  
Da Hu Zhu ◽  
Zhen Xin Zhou ◽  
Jing Zhu Pang ◽  
Jian Guo Yang

The surface quality of workpiece depends largely on workpiece surface temperature in grinding. The key parameters on workpiece surface temperature calculation model have been researched and the calculation model constructed in this paper, including the convective heat transfer coefficient (CHTC) (hf), heat flux (qch) and the grain contact half-width (r0) which are assumed to be constant in workpiece surface temperature model given by Rowe. And the improved Rowe model has been proposed (Rowe/Li model) which not only involves the grinding process parameters such as the speed of wheel and workpiece, but also the geometric parameters of workpiece, grinding wheel and abrasive. The experimental results of the surface temperature in high-speed grinding are very close to the results by Rowe / Li model. Relative to the Rowe model, the obtained surface temperature by Rowe / Li model has decreased by about 35-40%. Under the conditions of the same material removal rate, high-speed grinding, namely, increasing wheel speed can effectively reduce the surface temperature and improve the grinding quality.


2011 ◽  
Vol 264-265 ◽  
pp. 931-936 ◽  
Author(s):  
B. de Agustina ◽  
A. Saa ◽  
Mariano Marcos Bárcena ◽  
E.M. Rubio

The aluminium alloys are widely employed in the aeronautical, aerospace and automotive industries in the most important manufacturing processes. This is due to the fact they have a high resistance even at high temperatures as well as a low density. Nevertheless, these materials can commonly show problems associated with the heat generated during the machining process that reduces their machinability. For this reason, cutting fluids are still widely used. However, the growing social preoccupation towards environmental conservation has made it necessary to develop cleaner production technologies as dry machining, in which no cutting fluids are employed. This situation makes necessary to look for combinations of cutting parameters and types of tools that improve the machining in those extreme work. In this study, the UNS A97050-T7 and UNS A92024-T3 aluminium alloys were analyzed in terms of surface roughness and the morphology of chips obtained, using tools with TiN coating. It was found that the surface quality of the aluminium UNS A97050-T7 and UNS A92024-T3 bars improves with the descent of the feed and with the increase of the cutting speed, being the feed the cutting parameter more influential on the surface roughness. Thus the machining of the UNS A92024-T3 allows obtaining shorter chips than the UNS A97050-T7.


2008 ◽  
Vol 53-54 ◽  
pp. 203-208 ◽  
Author(s):  
Dong Jiang Wu ◽  
B. Wang ◽  
Hang Gao ◽  
Ren Ke Kang ◽  
Xian Suo Cao

Potassium dihydrogen phosphate (KDP) crystal is widely used in navigates spaceflight, national defenses, energy sources and information technology fields based on its excellent nonlinear optical property. Surface quality of KDP crystal influences the property and life time of the device directly. So detection and analysis of the damage induced during machining process, especially on subsurface, should be solved. In this paper, surface damage of the KDP crystal, which machined from #600 grinding wheel with different feed rate, was detected by optical microscope. Cross section and selective etching were used to analyzing the subsurface damage. Because #600 grinding wheel mainly used in coarse grinding and the removal rate is high, the results shown that there was obvious scratch, crack and crushing on the machining surface. When the feed rate is 10+m and 40+m, the subsurface damage depth is 7.41+m and 8.96+m corresponding. This study is a kind of guide for following precision grinding, polishing machining time and removal amount.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2007 ◽  
Vol 24-25 ◽  
pp. 229-232
Author(s):  
S.L. Ma ◽  
Wei Li ◽  
Cong Rong Zhu ◽  
J. Zhang ◽  
H.C. Ye

Tungsten carbide which is a hard and brittle material was ground by cast-iron bonded diamond wheel with ELID (Electrolytic In-Process Dressing) technique, for the purpose of getting high efficiency, super-precision machining. Three kinds of cast-iron bonded diamond wheels with different grain size were adopted to get different grinding efficiency and surface quality of workpieces. The grinding properties of cast-iron bonded grinding wheels with different grain size and the ground surface quality of tungsten carbide are discussed in this paper. The experiment results indicate that, under the same feeding amount, the grinding efficiency of the wheel with bigger grain size is higher, and it could make the dimension accuracy of the workpiece controllable, but the wheel with smaller grain size could get better ground surface quality. The two grinding phases are decided by the ratio between the size of abrasive grain and the thickness of the oxide layer on the grinding wheel.


Sign in / Sign up

Export Citation Format

Share Document