Study of Crown Three-Dimension Model Rebuilding Based on RE Technology and its Laser RP Technology

2013 ◽  
Vol 385-386 ◽  
pp. 1752-1755
Author(s):  
De Qiang Zhang ◽  
Xin Li

Complex geometric model can be reconstructed rapidly and accurately with reverse engineering technology which is an important engineering technology .This paper focuses on the CAD/CAE/CAM integrated technology of crown restorations based on RE technology .To construct satisfied 3D model , the digital model from RE technology is combined with and finite element analysis of CAE. Advanced manufacturing technology is used for manufacturing of resin materials crown. That is laser rapid manufactory technology.

2011 ◽  
Vol 467-469 ◽  
pp. 335-338
Author(s):  
Su Yang Li ◽  
Si Yuan Cheng ◽  
Can Hua Qiu

Recently, reverse engineering technology and finite element analysis (FEA) are regarded as two modern design methods in industrial fields. In this paper, the piston connecting rod of one car’s engine is taken for example, the application procedure for integration of reverse engineering and finite element analysis is introduced. Firstly, CAD geometric model is rebuilt by reverse engineering technology, which is analyzed by finite element method using ANSYS Workbench software. Peak values of the maximum stress and deformation as well as its occurrence position can be understood, thus design parameters may be improved and optimized based on the finite element results.


Author(s):  
Valentin Mereuta

Abstract: In this work the 3D model of the camshaft was done using Autodesk Inventor version 2021 with the literature data and finite element analysis is performed by applying restrictions and loads conditions, first by the absence of the torque and then by applying the torque. Three materials were analyzed in both situations: Cast Iron, Stainless Steel AISI 202 and Steel Alloy. Following the comparative study for the three materials, it can be specified the importance of the material for the construction of the camshaft. Keywords: Camshaft, Static analysis, Autodesk Inventor


2002 ◽  
Vol 124 (2) ◽  
pp. 189-199 ◽  
Author(s):  
Y. B. Guo ◽  
C. R. Liu

A practical explicit 3D finite element analysis model has been developed and implemented to analyze turning hardened AISI 52100 steels using a PCBN cutting tool. The finite element analysis incorporated the thermo-elastic-plastic properties of the work material in machining. An improved friction model has been proposed to characterize tool-chip interaction with the friction coefficient and shear flow stresses determined by force calibration and material tests, respectively. A geometric model has been established to simulate a 3D turning. FEA Model predictions have reasonable accuracy for chip geometry, forces, residual stresses, and cutting temperatures. FEA model sensitivity analysis indicates that the prediction is consistent using a suitable magnitude of material failure strain for chip separation, the simulation gives reasonable results using the experimentally determined material properties, the proposed friction model is valid and the sticking region on the tool-chip interface is a dominant factor of model predictions.


2012 ◽  
Vol 538-541 ◽  
pp. 2681-2684
Author(s):  
Zhi Cheng Huang

Took a type of ceramics for daily use vertical type high pressure grouting machine as the object of study, study the stress and strain of its upper and lower mould plates. Established their 3D model by CAD software Pro-E, and then import them into finite element analysis software to analysis the value and distribution of the stress and strain. The analysis results can provide some reference for design, and have some engineering and practical value.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Zhao Xu ◽  
Zezhi Rao ◽  
Vincent J. L. Gan ◽  
Youliang Ding ◽  
Chunfeng Wan ◽  
...  

Mesh generation plays an important role in determining the result quality of finite element modeling and structural analysis. Building information modeling provides the geometry and semantic information of a building, which can be utilized to support an efficient mesh generation. In this paper, a method based on BRep entity transformation is proposed to realize the finite element analysis using the geometric model in the IFC standard. The h-p version of the finite element analysis method can effectively deal with the refined expression of the model of bending complex components. By meshing the connection model, it is suggested to adopt the method of scanning to generate hexahedron, which improves the geometric adaptability of the mesh model and the quality and efficiency of mesh generation. Based on the extension and expression of IFC information, the effective finite element structure information is extracted and extended into the IFC standard mode. The information is analyzed, and finally the visualization of finite element analysis in the building model can be realized.


2014 ◽  
Vol 60 (3) ◽  
pp. 323-334 ◽  
Author(s):  
G. Leonardi

Abstract The paper presents a numerical study of an aircraft wheel impacting on a flexible landing surface. The proposed 3D model simulates the behaviour of flexible runway pavement during the landing phase. This model was implemented in a finite element code in order to investigate the impact of repeated cycles of loads on pavement response. In the model, a multi-layer pavement structure was considered. In addition, the asphalt layer (HMA) was assumed to follow a viscoelastoplastic behaviour. The results demonstrate the capability of the model in predicting the permanent deformation distribution in the asphalt layer.


2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2012 ◽  
Vol 461 ◽  
pp. 21-25
Author(s):  
Cheng Jun Zhu ◽  
Xiao Jing Li

Finite element analysis is an advanced technology, by which a complicated engineering problem can be solved by theory analysis. Firstly, we build a 3D model of a hydraulic component under 3D software environment. Then the component model is load into FEA module. Subsequently, the model is meshed and set the outer loading. At last, the analysis step is conducted and get the result. The result showed the optimized structure of component. It assumed that the study result have some value for further improved design


2012 ◽  
Vol 630 ◽  
pp. 291-296
Author(s):  
Yu Wang ◽  
En Chen ◽  
Jun Qing Gao ◽  
Yun Feng Gong

In the past finite element analysis (FEA) and multi-body system simulation (MBS) were two isolated methods in the field of mechanical system simulation. Both of them had their specific fields of application. In recent years, it is urgent to combine these two methods as the flexible multi-body system grows up. This paper mainly focuses on modeling of the spindle system of hammer crusher, including geometric model, finite element model and multi-body dynamics (MBD) model. For multi-body dynamics modeling, the contact force between hammer and scrap steel was discussed, which is important to obtain the impact force. This paper also proposed how to combine FEA and MBS to analyze the dynamic performance of the spindle system by using different software products of MSC.Software.


2005 ◽  
Vol 09 (03) ◽  
pp. 103-111 ◽  
Author(s):  
Kyu-Jung Kim ◽  
Il-Kyu Hwang

A simple yet efficient paradigm for geometric mesh generation using the Visible Human Project Male dataset for further finite element analysis was presented. The minimum distance classifier was used for the discriminant function between the class centers classified by the fuzzy c-means clustering method in the RGB space. Furthermore, based on two major geometric assumptions on the boundary curves, star-shaped polygon and geometric conformity, a points-on-line search technique was devised for efficient computation of the boundary points of the contours for each anatomical component of the human forearm complex. The computed boundary points in each slice were fitted to a closed spline curve and resampled and then refitted for correct alignment with the consecutive boundary curves in order to improve geometric fidelity. By using the refitted contours, a 3-D geometric model of the human radius, ulna, and surrounding soft tissue was generated in a commercial computer–aided design system and exported to a commercial finite element analysis package for meshing with its built-in automatic mesh generator. The proposed method can be applied to geometric mesh generation of other long bones, which allows easy handling, storage, and exchange of the model.


Sign in / Sign up

Export Citation Format

Share Document