Study on Carbonization Test of Manufactured Sand Concrete

2013 ◽  
Vol 423-426 ◽  
pp. 1036-1040
Author(s):  
Da Zhen Xu ◽  
Gu Hua Li ◽  
Zhuang Zhi Liao ◽  
Hai Wei Yan

To study the impact of mineral admixtures and water-binder ratio on carbonization resistance of high performance manufactured sand concrete, high performance concrete of single mixed flyash, admixing silica fume and no admixture were compounded, carbonation depth of 3d, 7d, 14d and 28d was recorded by the way of indoor test. The test results show that with the decrease of water-binder ratio, carbonation resistance of high performance manufactured sand concrete increase, and when the concrete compressive strength is over 55Mpa, carbonation resistance is good, and when water-binder ratio is lower than 0.38, the impact of mineral admixtures on the carbonation resistance can be neglected.

2013 ◽  
Vol 671-674 ◽  
pp. 1839-1843
Author(s):  
Yuan Gang Wang ◽  
Chao Wan ◽  
Kai Jian Huang ◽  
Gao Qin Zhang ◽  
Ya Feng Hu

Several compound mineral admixtures, such as steel slag powder, granulated blast furnace slag powder and silica fume, are mixed with proper proportion to improve the workability of High Performance Concrete(HPC). Through the orthogonal experiment, workability of HPC is analyzed on water-binder ratio, sand ratio, the amount of superplasticizer and the amount of compound mineral admixtures. Results show that: workability of HPC was significantly effected by the amount of naphthalene sulphonate water-reducing admixture and water-binder ratio, the amount of compound mineral admixtures and sand ratio are impact factors on the workability in a certain extent.


2011 ◽  
Vol 99-100 ◽  
pp. 762-767 ◽  
Author(s):  
Xian Tang Zhang ◽  
Kang Ning Gao ◽  
Xiao Chen Zhou ◽  
Hong Li Wang

There is a close relationship between the gas permeability of modern high strength concrete and the concrete durability. Through the Cembureau method, gas permeability coefficients of ordinary concrete and concrete with admixtures under different maintenance periods were tested. We studied the influence of fly ash and slag on high performance concrete gas permeability, and analysed the rules of gas permeability changing with mineral admixtures and the water-binder ratio, and gave the reasonable range of mineral admixtures and the water-binder ratio. The results from the paper may have the certain reference value to practical application.


2013 ◽  
Vol 357-360 ◽  
pp. 588-591 ◽  
Author(s):  
Yan Zhou Peng ◽  
Jin Huang ◽  
Jin Ke

Reactive powder concrete (RPC) is an ultra-high performance concrete (UHPC). Cement and silica fume content of RPC are generally rather high compared to the conventional concrete. The aim of this paper is to decrease the cement content of RPC by using phosphorous slag powder. Firstly the effect of grinding time on the activity index of phosphorous slag was investigated. And then, the mix proportion design of this UHPC containing phosphorous slag powder and silica fume was done through orthogonal design. The results indicate that the utilization of phosphorous slag powder in RPC is feasible when the dosage of phosphorous slag powder is about 35% (by weight of the binder) and the water-binder ratio is less than 0.18. By substituting phosphorous slag powder for a part of cement and keeping the water-binder ratio at about 0.14, UHPC specimens whose content of mineral admixtures, including phosphorous slag powder and silica fume, was about 40%~50% (by weight of the binder) were obtained after they had been cured in 80 °C water for 72 hours. The compressive and flexural strength of those specimens was more than 150 MPa and 20 MPa respectively.


2018 ◽  
Vol 49 ◽  
pp. 00079
Author(s):  
Krzysztof Ostrowski

Self-Compacting High Performance Concrete (SCHPC) presents a crucial step in the development of concrete technology. The most important features of self-consolidating concrete are flowability, segregation resistance and passing ability. Generally, the rheological properties are modified by effective superplasticisers and water to binder ratio. The aim of this study is to focus on the important aspect of the impact of shape of the coarse aggregate on fresh concrete mixture properties, strength and deformability of SCHPC. Coarse aggregate is a significant proportion of the concrete volume and therefore has a meaningful influence on its quality. By appropriate selection of the shape of the grain aggregate, it is possible to affect the rheological parameters of concrete. The results presented in this study indicated that the shape of the grains of coarse aggregate has an impact on the strength and stiffness of SCHPC. Moreover, the occurrence of irregular grains of coarse aggregate causes lower slump flow and higher plastic viscosity in comparison to concrete mixtures with regular grains only. The research presented in this article is part of the author's wider research devoted to this issue.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3148 ◽  
Author(s):  
Hongyan Chu ◽  
Fengjuan Wang ◽  
Liguo Wang ◽  
Taotao Feng ◽  
Danqian Wang

Ultra-high-performance concrete (UHPC) has received increasing attention in recent years due to its remarkable ductility, durability, and mechanical properties. However, the manufacture of UHPC can cause serious environmental issues. This work addresses the feasibility of using aeolian sand to produce UHPC, and the mix design, environmental impact, and mechanical characterization of UHPC are investigated. We designed the mix proportions of the UHPC according to the modified Andreasen and Andersen particle packing model. We studied the workability, microstructure, porosity, mechanical performance, and environmental impact of UHPC with three different water/binder ratios. The following findings were noted: (1) the compressive strength, flexural strength, and Young’s modulus of the designed UHPC samples were in the ranges of 163.9–207.0 MPa, 18.0–32.2 MPa, and 49.3–58.9 GPa, respectively; (2) the compressive strength, flexural strength, and Young’s modulus of the UHPC increased with a decrease in water/binder ratio and an increase in the steel fibre content; (3) the compressive strength–Young’s modulus correlation of the UHPC could be described by an exponential formula; (4) the environmental impact of UHPC can be improved by decreasing its water/binder ratio. These findings suggest that it is possible to use aeolian sand to manufacture UHPC, and this study promotes the application of aeolian sand for this purpose.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3385 ◽  
Author(s):  
Min Wang ◽  
Hao Yao

The low flowability and high viscosity of ultra-high performance concrete (UHPC), which is mainly caused by the silica fume (SF) agglomeration and low water–binder ratio, is a severe defect in its engineering applications. Herein, a novel organic–inorganic hybrid (OIH) admixture was synthesized by grafting comb-like polycarboxylate ether (PCE) onto the surface of SF. On the one hand, PCE-grafting could effectively prevent SF agglomeration and improve the dispersion of SF core. The reason being the consumption of polar silicon hydroxyl (Si-OH) groups on the surface of SF and the steric hindrance effect generated from PCE arms. On the other hand, OIH admixture could adsorb onto the surface of cement and SF particles by electrostatic interaction, exhibiting stronger steric hindrance effect than traditional comb-like PCE. As a result, UHPC system with this star-like OIH admixture presented high flowability and low viscosity at low water–binder ratio (0.18).


2013 ◽  
Vol 742 ◽  
pp. 220-223 ◽  
Author(s):  
Yu Xi An

The aim of this study was to study the effect of nanoSiO2 on durability of high performance concrete. Four different nanoSiO2 contents (1%, 2%, 3% and 4%) were used. The results indicate that the content of nanoSiO2 has great effect on the durability of high performance concrete. With the increase of nanoSiO2 content, both of the length of water permeability and the carbonation depth of concrete are decreasing gradually, and the water impermeability and the carbonation resistance of concrete are increasing gradually. However, with the increase of nanoSiO2 content, there is a tendency of increase on the dry shrinkage strain of 90 days of high performance concrete, and the anti-dry-shrinkage cracking property of concrete is decreasing.


2013 ◽  
Vol 859 ◽  
pp. 52-55 ◽  
Author(s):  
Yong Qiang Ma

A great deal of experiments have been carried out in this study to reveal the effect of the water-binder ratio and fly ash content on the workability and strengths of GHPC (green high performance concrete). The workability of GHPC was evaluated by slump and slump flow. The strengths include compressive strength and splitting tensile strength. The results indicate that the increase of water-binder ratio can improve the workability of GHPC, however the strengths of GHPC were decreased with the increase of water-binder ratio. When the fly ash content is lower than 40%, the increase in fly ash content has positive effect on workability of GHPC, while the workability begins to decrease after the fly ash content is more than 40%. The addition of fly ash in GHPC has adverse effect on the strengths, and there is a tendency of decrease in the compressive strength and splitting tensile strength of GHPC with the increase of fly ash content.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Djedjen Achmad ◽  
Desi Supriyan

ABSTRACTHas been researched the impact of mud in aggregate on geopolymer concrete with studies using the cement concrete as a reference. In this study both of concrete are mixed with a variation of mud of 0%, 0.75%, 3% and 5.75% of the combined aggregate weight. Compressive strength of cement concrete is designed with a target of 300 kg / cm2 and geopolymer concrete is made with water binder ratio (w/b) 0.25, Molarity 12 M, the ratio of sodium silicate and sodium hydroxide 1.5. At the age of 3, 7, 14 and 28 day tested of compressive strength, while the spliting test, flexural tensile strength, and modulus of elasticity are tested at 28 days. From the test results, the higher mud content in aggregate , the mechanical properties of the concrete are decreased. Based on testing of compressive strength in cement concrete at 28 days, with a 3% mud content (the content of the reference mud) turns of compressive strength decreased by 77.356%. Of the percentage reduction on the compressive strength of the cement concrete, can be compared to the mud content in geopolymer concrete at 2.04%. Thus the maximum mud on geopolymer concrete aggregate is, for coarse aggregate of 0.68% and a maximum mud content for fine aggregate was 3.4%.Key words : Mud, aggregate, concrete, cement, geopolimer, strengthABSTRAKTelah diteliti dampak kadar lumpur pada agregat untuk beton geopolimer dengan penelitian menggunakan benda uji beton semen sebagai acuan dan beton geopolimer. Dalam penelitian ini ke dua beton tersebut dicampur dengan lumpur gabungan agregat kasar dan agregat halus dengan variasi 0 %, 0.75 %, 3 % dan 5,75 % dari berat agregat gabungan. Beton semen dirancang dengan target kuat tekan 300 kg/cm2 dan beton geopolimer dibuat dengan campuran water binder ratio (w/b) 0.25, Molaritas 12 M, perbandingan sodium silikat dan sodium hidroksida 1.5. Pada umur 3, 7, 14 dan 28 hari dilakukan uji kuat tekan, sedangkan uji kuat tarik belah, uji kuat tarik lentur, dan modulus elastisitas dilakukan pada umur 28 hari. Dari hasil uji terlihat bahwa semakin tinggi kadar lumpur pada agregat, karakteristik mekanis kedua beton tersebut mengalami penurunan. Berdasarkan pengujian kuat tekan pada beton semen umur 28 hari, dengan kadar lumpur 3 % (kadar lumpur referensi) ternyata beton semen mengalami penurunan kuat tekan sebesar 77.356 %. Dari persentase penurunan kuat tekan beton semen tersebut, diplot pada grafik kuat tekan beton geopolimer maka persentase kadar lumpur gabungan yang mengalami penurunan 77.356 % adalah 2.04 %. Dengan demikian kadar lumpur maksimum pada agregat beton geopolimer adalah, untuk agregat kasar sebesar 0.68 % dan kadar lumpur maksimum untuk agregat halus adalah 3.4 %.Kata kunci : Lumpur, agregat, beton, semen, geopolimer, kekuatan


2013 ◽  
Vol 405-408 ◽  
pp. 2610-2615
Author(s):  
Lei Hong ◽  
Run Min Duo

The chloride diffusion coefficients of different water-binder ratio high performance concrete (HPC) subjected to different one-way loads,freeze-thaw cycles and different standard curing ages were measured by electro-migration (RCM) tests and the results were analyzed. The test results indicate that with the increase of one-way load, its influence on the chloride permeability of different water-binder ratio HPC rises in the same proportion. The influence of the curing age on the chloride permeability of HPC will decrease with the reduction of the water-binder ratio of HPC. Under the same freeze-thaw cycle conditions, the relationships between chloride diffusion coefficients of different water-binder ratio HPC and curing ages are nearly suitable to power function.


Sign in / Sign up

Export Citation Format

Share Document