Numerical Simulation Analysis on Interaction among Underground Structure, Shear Connectors and Retaining Piles

2013 ◽  
Vol 423-426 ◽  
pp. 1351-1356
Author(s):  
Xiao Yu ◽  
Ming Xing Luo

The method of retaining piles working as an anti-floating piles has advantages of lesser environmental impact, high utilization of resources and good in economic benefits, but the method effecting on underground structure was worthy of further study and exploitation. According to the practical underground projects, this paper has proposed three possible connections between underground structure, shear connectors and retaining piles. The analysis showed that the internal force and displacement of underground structural is affected distinctly by the method. In addition, characters and applicable ranges of the three different connections is introduced with the finite element analysis and calculation of stress and displacement of the main parts like base plate ,top plate ,and so on.

2010 ◽  
Vol 163-167 ◽  
pp. 251-258
Author(s):  
Jian Hua Shao ◽  
Zai Hui Wang ◽  
Guang Ya Tao

Unloading is a complicated process that the load-carrying condition of main structure is gradually transferred and the internal force is redistributed, and so the exact numerical simulation applied on the unloading process is crucially important. The steel roof composed of the space tubular truss with the long-span and cantilevered structure for the Helan Shan stadium at Yinchuan city in Ningxia Hui autonomous region is taken as an analytical example and the finite element analysis software SAP2000 is used to simulate the unloading process during the steel construction. The computational model is established and the simulation method is provided for investigating the detailed unloading process of steel roof. The load-carrying characteristic of every bracing point acquired by the numerical simulation analysis is applied to analyze and evaluate the structural performance under two different comparable unloading cases and then an optimized unloading scheme is achieved from these two cases. The deformation of steel roof and stress ratio of steel member at each different unloading step during the whole unloading process are presented. Ultimately, based on the preferable unloading scheme, the temporary bracing structure is designed by using the maximum reaction of bracing points when unloading.


2014 ◽  
Vol 487 ◽  
pp. 127-130 ◽  
Author(s):  
Guo Liang Fu ◽  
Zhi Yi Huo ◽  
Li Po Zhao ◽  
Qian Wang

Stainless steel pipe joint parts is the most important parts to join the stress pipeline. internal defects are more likely to occur when stainless steel joint part is produced by traditional casting method or welding forming method, while the upsetting extrusion proposed in this essay can not only meet the part quality requirements, but also save material and shorten processing cycle. By numerical simulation analysis about part upsetting extrusion forming process with the finite element analysis method, we can obtain many index numerical values in part forming process, and therefore provide reliable quantitative basis for optimum design.


2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guoqing Liu ◽  
Yanhong Zhang ◽  
Ming Xiao

In order to explore the influence of internal water on the seismic response of hydraulic tunnel, the combined mechanical analysis models of multimaterial including surrounding rock, lining structure, and internal water are built. Based on the explicit central difference method, the dynamic finite element analysis methods for rock, lining, and water are discussed, respectively. The dynamic contact force method is used to simulate the rock-lining contact interaction, and the arbitrary Lagrange-Euler (ALE) method is used to simulate the lining-water coupling interaction. Then a numerical simulation analysis method for combined seismic response of rock-lining-water system in hydraulic tunnel is proposed, and the detailed solving steps are given. This method is used to study the seismic stability characteristics of the water diversion tunnel in a hydropower station, and the displacement, stress, and damage failure characteristics of the lining structure under the conditions of no water, static water, and dynamic water are comparatively analyzed. The results show that the hydrostatic pressure restricts the seismic response of the lining, while the hydrodynamic pressure exacerbates its seismic response and leads to damage, separation, and slip failure appearing on the haunch, which can provide a scientific reference for the seismic design of hydraulic tunnel with high water head and large diameter.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhen Ouyang ◽  
Ke Wang ◽  
Zihao Yu ◽  
Kaikai Xu ◽  
Qianyu Zhao ◽  
...  

It is a complex problem to study the interaction between sand castle and flowing water, which needs to consider the complexity of seawater flow and the stress of sand castle structure. The authors use the fluid-solid coupling model to establish the connection between the fluid field and the structural mechanical field, and use the finite element analysis to complete the simulation modeling of the transient process of wave impact and sandcastle foundation deformation. This paper analyzes the stress and the first principal strain of the sand castle foundation in the direction of flow velocity when the sand castle foundation is hit by waves, as a method to judge the strength of the sand castle.The best shape: the boundary value of sand castle collapse caused by strain have been determined, so as to obtain the maximum stress that a sand castle foundation can bear before collapse, which makes it possible to use the fatigue strength calculation theory of sand castle solid to carry out the quantitative calculation of sand castle durability. At the same time, the impact of waves is abstracted as wave motion equation. Finally, the finite element analysis technology is adopted to calculate the main strain of sandcastles of different shapes under the impact of the same wave, and through the comparison of the main strain, the authors get the sandcastle shape with the strongest anti-wave impact ability, which is the eccentric circular platform body.Affected by rain: the authors considered the effect of rainwater infiltration on the sandcastle's stress, and simplified the process of rain as a continuous and uniform infiltration of rain into the sandcastle's surface. The rain changes the gravity of the sand on the castle's surface. Simulation analysis is adopted to calculate the surface stress of sand castle with different degree of water seepage and different geometry. By comparison, it has been found that the smooth cone is more able to withstand the infiltration of rain without collapse. 


2019 ◽  
Vol 138 ◽  
pp. 01001
Author(s):  
A Zhang ◽  
G Shangguan ◽  
Yanxia Zhang ◽  
Dinan Shao

The numerical simulation analysis of the two groups of fullscale complex tubular joints of the Beijing New Airport Terminal C type steel column under space static loading tests has been conducted by adopting software ABAQUS. The results obtained from the numerical simulation analysis consistent with those from the tests which enriched the research findings. Based on the research, mechanical performance of the joints has been carried out, the failure modes and ultimate bearing capacity of the joints with no stiffening ribs, three stiffening ribs and five stiffening ribs has been obtained. The numerical simulation results showed that, the bearing capacity of the joints without stiffening ribs were relatively low, the plastic failure of the main pipe was the major form of the destruction and the safety performance were too poor to meet the actual needs of the project. The bearing capacity of the joints significantly improved with the stiffening ribs set inside and the destruction changed to the connection of the main tubular and the branch, which means that the stress of the joints has been obviously improved by the setting of the stiffening ribs and was able to meet the needs of Beijing New Airport Terminal C type column. Through the comparative analysis of the stiffening ribs setting, it can be found that the bearing capacity of the joints were similar between the three and five stiffening ribs, considering the construction difficulty and economic benefits, three stiffening ribs has been selected as the final optimization result.


2011 ◽  
Vol 137 ◽  
pp. 159-166
Author(s):  
Ying Zeng Zhu ◽  
Fei Gao ◽  
Jun Dong Kong

This paper aims at research on fundamental principles of long concrete wall cracks in basement on the basis of series basic experiments and engineering practices. Relying on typical project, we use ABAQUS finite element analysis software to conduct simulation analysis to provide evidence for integrated control of cracks. Simulation analysis results show that the reinforcement stresses has tight connections with constraint mode of structure, for instance, column side and the location connected with foundation; effective limits of boundary constraints to structure deformation and constraints of free-form deformation on long wall structure make the concentration of reinforcement stresses nearing constraint location relatively obvious; under the effects of temperature and contraction, internal force of concrete wall will be re-distributed, therefore, reinforcement stress of concrete can not directly reveal actual force distribution inside the wall, but the overall trend is close to concentrated pattern of reinforcement stress.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 202
Author(s):  
Gui Li ◽  
Xiaoyu Long

Advanced high strength galvanized steel sheet has been one of the dominant materials of modern automotive panels because of its outstanding mechanical properties and corrosion resistance. The zinc coating thickness of hot dip galvanized steel sheet is only about 10–20 μm, which is a discarded object on the macro level. However, it is obvious to damage and impact on stamping performance. Therefore, this paper takes zinc coating as the research object and builds its mechanical constitutive model based on a nano-indentation test and dimensional analysis theory. We separated the zinc coating from the galvanized steel substrate and constructed a sandwich material model by introducing a cohesive layer to connect the zinc coating and the steel substrate. We obtained the interface binding energy between the zinc coating and the steel substrate through the nano-scratch test. The accuracy of the model is verified by the finite element analysis of hemispherical parts. We used the five-layers element model with 0 thickness cohesive layer to simulate the zinc coating damage of galvanized steel sheet. The hemispherical part drawing experiment is used to verify the feasibility of the finite element analysis results. The results demonstrate that it is more accurate to consider the finite element numerical simulation of the zinc coating, introducing the cohesive element to simulate damage between the coating and the substrate. Drawing depth, stamping force, and the strain of the numerical simulation are closer to the experimental results.


2014 ◽  
Vol 1025-1026 ◽  
pp. 955-958 ◽  
Author(s):  
Jun Jie Shi ◽  
Ya Nan Li ◽  
Li Qin

The theoretical study of galloping can effectively promote anti-galloping techniques. Cable element is utilized to imitate the bundled conductor, and beam elements are used to simulated the spacers, established galloping finite element analysis model which can consider sub-conductors wake interference. The finite element equation was solved by time integration method and the calculation program was compiled by MATLAB. Through numerical simulation analysis, compared the dancing in the case of considering the effect of the sub-conductor wake and ignoring the effect of the sub-conductor wake. The results showed that considering the effect of the wake on aerodynamic loads has a greater vertical vibration amplitude. This method can provide reference for the study of prevention technology on dancing.


2013 ◽  
Vol 455 ◽  
pp. 609-614
Author(s):  
Yu Bai ◽  
Jian Cheng Yang ◽  
Qing Zhang ◽  
Hua Qing Wang ◽  
Kai Yang ◽  
...  

This paper analyzes the traction mechanism of the angle interlocking multilayer loom of carbon fiber.It can enlarge the output force of the cylinder through the double-rocker stress amplification mechanism,which is applied to the upper roller,making the upper and lower roller compact, then pulling away the cloth by from the cloth woven mouth power system. This paper deduced the mathematical calculation formula of the moment .In addition,the simulation analysis of dynamics and statics for the key component of the model has been carried on. Through the finite element analysis software.Analysis shows that the parts could work according to schedule which provides a powerful guarantee for the realization of the function of the entire organization .


Sign in / Sign up

Export Citation Format

Share Document