Effect of Curing Time on the Pore Structure of the Portland Cement Concrete

2010 ◽  
Vol 44-47 ◽  
pp. 2592-2596
Author(s):  
Wei Lun Wang ◽  
Peng Liu

In this paper, the influence of curing time on the compressive strength and pore structure of the Portland cement concrete was investigated. The phase composition and morphology of hydration products of Portland cement were analyzed with X-ray diffraction (XRD). In addition, the porosity and pore distribution of the concrete were also researched using mercury intrusion porosimetry (MIP), surface area and porosity analyzer (BET). The results show that the influence of curing time on the compressive strength and pore structure of the concrete is obvious. With curing time increasing, the compressive strength of the concrete increased and the porosity decreased. The corresponding fractal dimension of the pore and the microstructure were changed, as well. With time increasing, more hydration products were produced.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4863
Author(s):  
Won Jung Cho ◽  
Min Jae Kim ◽  
Ji Seok Kim

Pore structure development in Portland cement, fly ash, or/and ferronickel slag (FNS) was investigated using mercury intrusion porosimetry and X-ray CT tomography. The progress of hydration was observed using X-ray diffraction (XRD) analysis and compressive strength while durability of concrete was monitored by chloride penetration resistance and chloride profiles. Mercury intrusion porosimetry (MIP) results suggested that the blended cement had a higher porosity while lower critical pore size. The major reason to this increased porosity was the formation of meso and micro pores compared to ordinary Portland cement (OPC). In terms of chloride transport, replaced cement, especially ternary-blended cement had higher resistance to chloride transport and exhibited slightly lower development of compressive strength. X-ray CT tomography shows that the influence of pore structure of ternary-blended cement on the ionic transport was strongly related to the pore connectivity of cement matrix.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tsai-Lung Weng ◽  
Wei-Ting Lin ◽  
An Cheng

This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight.


2020 ◽  
Vol 18 (6) ◽  
pp. 1615-1640
Author(s):  
Eric Asa ◽  
Monisha Shrestha ◽  
Edmund Baffoe-Twum ◽  
Bright Awuku

Purpose Environmental issues caused by the production of Portland cement have led to it being replaced by waste materials such as fly ash, which is more economical and safer for the environment. Also, fly ash is a material with sustainable properties. Therefore, this paper aims to focus on the development of sustainable construction materials using 100% high-calcium fly ash and potassium hydroxide (KOH)-based alkaline solution and study the engineering properties of the resulting fly ash-based geopolymer concrete. Laboratory tests were conducted to determine the mechanical properties of the geopolymer concrete such as compressive strength, flexural strength, curing time and slump. In phase I of the study, carbon nanotubes (CNTs) were added to determine their effect on the strength of the geopolymer mortar. The results derived from the experiments indicate that mortar and concrete made with 100% fly ash C require an alkaline solution to produce similar (comparable) strength characteristics as Portland cement concrete. However, it was determined that increasing the amount of KOH generates a considerable amount of heat causing the concrete to cure too quickly; therefore, it is notable to forming a proper bond was unable to form a stronger bond. This study also determined that the addition of CNTs to the mix makes the geopolymer concrete tougher than the traditional concrete without CNT. Design/methodology/approach Tests were conducted to determine properties of the geopolymer concrete such as compressive strength, flexural strength, curing time and slump. In Phase I of the study, CNTs were studied to determine their effect on the strength of the geopolymer mortar. Findings The results derived from the experiments indicate that mortar and concrete made with 100% fly ash C require an alkaline solution to produce the same strength characteristics as Portland cement concrete. However, it was determined that increasing the amount of KOH generates too much heat causing the concrete to cure too quickly; therefore, it is notable to forming a proper bond. This study also determined that the addition of CNTs to the mix makes the concrete tougher than concrete without CNT. Originality/value This study was conducted at the construction engineering and management concrete laboratory at North Dakota State University in Fargo, North Dakota. All the experiments were conducted and analyzed by the authors.


2020 ◽  
Vol 9 (1) ◽  
pp. 998-1008
Author(s):  
Guo Li ◽  
Zheng Zhuang ◽  
Yajun Lv ◽  
Kejin Wang ◽  
David Hui

AbstractThree nano-CaCO3 (NC) replacement levels of 1, 2, and 3% (by weight of cement) were utilized in autoclaved concrete. The accelerated carbonation depth and Coulomb electric fluxes of the hardened concrete were tested periodically at the ages of 28, 90, 180, and 300 days. In addition, X-ray diffraction, thermogravimetry, and mercury intrusion porosimetry were also performed to study changes in the hydration products of cement and microscopic pore structure of concrete under autoclave curing. Results indicated that a suitable level of NC replacement exerts filling and accelerating effects, promotes the generation of cement hydration products, reduces porosity, and refines the micropores of autoclaved concrete. These effects substantially enhanced the carbonation and chloride resistance of the autoclaved concrete and endowed the material with resistances approaching or exceeding that of standard cured concrete. Among the three NC replacement ratios, the 3% NC replacement was the optimal dosage for improving the long-term carbonation and chloride resistance of concrete.


2016 ◽  
Vol 680 ◽  
pp. 392-397
Author(s):  
Zhu Ding ◽  
Meng Xi Dai ◽  
Can Lu ◽  
Ming Jie Zhang ◽  
Peng Cui

Magnesium phosphate cements (MPC) had been used as repair materials for deteriorated Portland cement concrete structures. In this paper a new MPC was prepared and the basic properties including workability and compressive strength were tested. The acid attack resistance of MPC was investigated by immersing the MPC mortars in solutions at pH 3, 5, and 7, for 14d, 28d and 60d respectively. The compressive strength of MPC mortars after acid attack was tested and the microstructure of MPC were examined. The results showed that the compressive strength of MPC decreased after immersion in acid solution for 14d and 28d, however the strength of MPC with suitable materials mixture can recovered again after 60d immersion. The results indicated MPC has high acid attack resistance in static acid solution. The behavior of MPC in flowing acid solutions is need to be studied further.


2011 ◽  
Vol 99-100 ◽  
pp. 692-695
Author(s):  
Tie Quan Ni ◽  
Li Zhang ◽  
Bing Yuan

The influence of wollastonite or plant fiber on the property of autoclaved cement concrete is studied by chemical composition analysis, X-ray diffraction analysis, scanning electron microscopy and energy spectrum analysis. The results showed that the two fibers were benefit to bending strength of autoclaved cement concrete. The suitable content of wollastonite was about 15% of cement mass, and the increased amplitude of flexural strength was more than 30% and the compressive strength slightly increased for autoclaved cement concrete admixed wollastonite. The optimal content of plant fiber was about 1.5% of cement mass, the increased amplitude of the flexural strength was more than 20%, and the compressive strength change of autoclaved cement concrete was not significant for autoclaved cement concrete admixed plant fiber.


2021 ◽  
Vol 22 (4) ◽  
pp. 746-749
Author(s):  
Oleksandr Sumariuk ◽  
Ihor Fodchuk ◽  
Volodymyr Romankevych

Аn analysis of the structure formation of concrete composites, compressive strength of which exceeds 120 MPa and a quantitative analysis of their qualitative composition and hydration products by X-ray diffraction, x-ray spectral analysis. The main factors affecting the physicomechanical parameters of the complex of various nanofillers and the formation of a denser cement stone structure, which mainly includes calcium hydrosilicates, calcium silicate hydroaluminates and hydroaluminates of various basicity, are studied.


Sign in / Sign up

Export Citation Format

Share Document